Skip to main content
Log in

Characterization of iron oxide-silica nanocomposites in flames: Part II. Comparison of discrete-sectional model predictions to experimental data

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A discrete-sectional model accounting for particle formation by chemical reaction and growth by coagulation and condensation is developed to predict the evolution of the nanocomposite aerosol size distribution in a multicomponent iron-silicon system in a flame. Particle formation by nucleation of the vapor is represented by an Arrhenius-type rate expression, with the rate constant being obtained from experiments and simulation results reported in the literature. Precursor vapor concentrations and the second aerosol volume moment predictions are compared to laser-induced fluorescence (LIF) and light scattering intensity measurements from experiments described in Part I20 of the paper. The results elucidate the important formation and growth mechanisms of nanocomposite ferric oxide-silica particles in flame reactors. The role of operating parameters such as precursor characteristics and temperature profiles on the final product characteristics is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Friedlander, Smoke, Dust and Haze (John Wiley and Sons, New York, 1977).

    Google Scholar 

  2. J. H. Seinfeld, Atmospheric Chemistry and Physics of Air Pollution (Wiley Interscience, New York, 1986).

    Google Scholar 

  3. F. Gelbard and J. H. Seinfeld, J. Comp. Phys. 28, 357 (1978).

    Article  CAS  Google Scholar 

  4. M. Frenklach and S. J. Harris, J. Colloid Int. Sci. 118, 252 (1987).

    Article  CAS  Google Scholar 

  5. J. J. Wu and R. C. Flagan, J. Appl. Phys. 61, 1365 (1988).

    Article  Google Scholar 

  6. J. D. Landgrebe and S. E. Pratsinis, J. Colloid Int. Sci. 139, 63 (1990).

    Article  CAS  Google Scholar 

  7. F. Gelbard, Y. Tambour, and J. H. Seinfeld, J. Colloid Int. Sci. 76, 541 (1980).

    Article  CAS  Google Scholar 

  8. C. W. von Rosenberg and K. L. Wray, J. Quant. Spectrosc. Radiat. Transfer 12, 531 (1972).

    Article  Google Scholar 

  9. D. R. Powers, J. Am. Ceram. Soc. 61, 295 (1978).

    Article  CAS  Google Scholar 

  10. M. R. Zachariah and W. Tsang, Aerosol Sci. Technol. 19, 499 (1993).

    CAS  Google Scholar 

  11. M. R. Zachariah and W. Tsang, J. Phys. Chem. 99, 5308 (1995).

    Article  CAS  Google Scholar 

  12. F. Gelbard and J. H. Seinfeld, J. Colloid Int. Sci. 78, 485 (1980).

    Article  CAS  Google Scholar 

  13. C. Y. Wu and P. Biswas, Comb. Flame 93, 31 (1993).

    Article  CAS  Google Scholar 

  14. G. D. Ulrich and J. W. Riehl, J. Colloid Int. Sci. 87 (1), 257 (1982).

    Article  CAS  Google Scholar 

  15. M. R. Zachariah, D. Chin, H. G. Semerjian, and J. L. Katz, Comb. Flame 78, 287 (1989).

    Article  CAS  Google Scholar 

  16. C. H. Hung and J. L. Katz, J. Mater. Res. 7, 1861 (1992).

    CAS  Google Scholar 

  17. H. Chang, W. Y. Lin, and P. Biswas, Aerosol Sci. Technol. 22, 24 (1995).

    Article  CAS  Google Scholar 

  18. P. Biswas, X. Li, and S. E. Pratsinis, J. Appl. Phys. 65, 2445 (1989).

    Article  CAS  Google Scholar 

  19. CRC Handbook of Chemistry and Physics, 75th ed. (CRC Press, Boca Raton, FL, 1994).

  20. B. K. McMillin, P. Biswas, and M. R. Zachariah, J. Mater. Res. 11, 1552 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, P., Wu, C.Y., Zachariah, M.R. et al. Characterization of iron oxide-silica nanocomposites in flames: Part II. Comparison of discrete-sectional model predictions to experimental data. Journal of Materials Research 12, 714–723 (1997). https://doi.org/10.1557/JMR.1997.0106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0106

Navigation