Skip to main content
Log in

Effect of lattice mismatch on the epitaxy of sol-gel LiNbO3 thin films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A solution precursor method based on metal alkoxides was used to produce epitaxial LiNbO3 thin films, ≈200 nm thick, on (0001) sapphire substrates. Transmission electron microscopy revealed that the major cause of surface roughness in these films was grain boundary grooves between mosaic grains with misorientations ⩽5°. It is postulated that these low angle boundaries directly result in surface grooving and roughness. The epitaxial films also contained two distinguishable variants in the film/substrate interfacial plane, namely, an aligned variant, \(\left\langle {\overline 1 } \right.2\overline 1 {\left. 0 \right\rangle _{{\rm{LiNb}}{{\rm{O}}_3}}}\) || \(\left\langle {\overline 1 } \right.2\overline 1 {\left. 0 \right\rangle _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}\) and a 60° rotated variant, \(\left\langle {\overline 1 } \right.2\overline 1 {\left. 0 \right\rangle _{{\rm{LiNb}}{{\rm{O}}_3}}}\) || \(\left\langle 1 \right.\overline 2 1{\left. 0 \right\rangle _{{\rm{LiNb}}{{\rm{O}}_3}}}\). A seeded grain growth method was used to minimize the presence of the 60° rotated variant. An epitaxial buffer layer of Fe2O3 was used to lower the mismatch strain, eliminate the 60° rotated variant, and reduce the mosaic nature of the LiNbO3 film. X-ray rocking curve full-width-at-half-maximum (FWHM) values measured on the (0112) film peak indicate that the mosaic character can be reduced from 1.5° to 0.76° by using a buffer layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Jackel, C. Rice, and J. Veselka, Appl. Phys. Lett. 41 (7), 607 (1982).

    Article  CAS  Google Scholar 

  2. M. Digonnet, M. Fejer, and R. Beyer, Opt. Lett. 10 (5), 235 (1985).

    Article  CAS  Google Scholar 

  3. R. Schmidt and I. Kaminow, Appl. Phys. Lett. 25, 458 (1974).

    Article  CAS  Google Scholar 

  4. D. Cromer, G. DeBrabander, J. Boyd, and H. Jackson, SPIE 993, 34 (1988).

    CAS  Google Scholar 

  5. D. K. Fork, F. Armani-Leplingard, J. J. Kingston, and G. B. Anderson, in Thin Films for Integrated Optics Applications, edited by B. W. Wessels, S. R. Marder, and D. M. Walba (Mater. Res. Soc. Symp. Proc. 392, Pittsburgh, PA, 1995), p. 189.

    Google Scholar 

  6. D. S. Hagberg and D. A. Payne, in Ferroelectric Thin Films, edited by E. R. Myers and A. I. Kingon (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 19.

    Google Scholar 

  7. P. G. Clem and D. A. Payne, in Thin Films for Integrated Optics Applications, edited by B. W. Wessels, S. R. Marder, and D. M. Walba (Mater. Res. Soc. Symp. Proc. 392, Pittsburgh, PA, 1995), p. 201.

    Google Scholar 

  8. D. J. Eichorst and D. A. Payne, in Better Ceramics Through Chemistry III, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), p. 773.

    Google Scholar 

  9. K. Nashimoto and M. J. Cima, Mater. Lett. 10, 348 (1991).

    Article  CAS  Google Scholar 

  10. V. Joshi, G. K. Goo, and M. L. Mecartney, in Better Ceramics Through Chemistry V, edited by M. J. Hampden-Smith, W. G. Klemperer, and C. J. Brinker (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), p. 377.

  11. N. H. Hur, Y. K. Park, D. H. Won, and K. No, J. Mater. Res. 9, 980 (1994).

    Article  CAS  Google Scholar 

  12. M. I. Yanovskaya, E. P. Turevskaya, A. P. Leonov, S. A. Ivanov, N. V. Kolganova, S. Yu. Stefanovich, and N. Ya. Turova, J. Mater. Sci. 23 (2), 395 (1988).

    Article  CAS  Google Scholar 

  13. D. P. Partlow and J. Greggi, J. Mater. Res. 2, 595 (1987).

    Article  CAS  Google Scholar 

  14. S. Hirano and K. Kato, Adv. Ceram. Mater. 3 (5), 503 (1988).

    Article  CAS  Google Scholar 

  15. K. Nashimoto, M. J. Cima, P. C. McIntyre, and W. E. Rhine, J. Mater. Res. 10 (19), 2564 (1995).

    Article  CAS  Google Scholar 

  16. Z. Lu, R. Hiskes, S. A. DiCarolis, R. K. Route, R. S. Feigelson, F. Leplingard, and J. E. Fouquet, J. Mater. Res. 9, 2258 (1994).

    Article  CAS  Google Scholar 

  17. D. K. Fork and G. B. Anderson, Appl. Phys. Lett. 63 (8), 1029 (1993).

    Article  CAS  Google Scholar 

  18. T. Kanata, Y. Kobayashi, and K. Kubota, J. Appl. Phys. 62 (7), 2989 (1987).

    Article  CAS  Google Scholar 

  19. A. K. Wernberg, H. J. Gysling, A. J. Filo, and T. N. Blanton, Appl. Phys. Lett. 62 (9), 946 (1993).

    Article  CAS  Google Scholar 

  20. J. J. Kingston, D. K. Fork, F. Leplingard, and F. A. Ponce, in Epitaxial Oxide Thin Films and Heterostructures, edited by D. K. Fork, J. M. Phillips, R. Ramesh, and R. M. Wolf (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 289.

  21. T. A. Rost and T. A. Rabson, IEEE Trans. Ultrason., Ferroelectrics and Frequency Control. 38 (6), 640 (1991).

    Article  CAS  Google Scholar 

  22. N. Fujimura, M. Kakinoki, H. Tsuboi, and T. Ito, J. Appl. Phys. 75 (4), 2169 (1994).

    Article  CAS  Google Scholar 

  23. K. Miller, C. J. Chan, M. G. Cain, and F. F. Lange, J. Mater. Resv. 8, 169 (1993).

    Article  CAS  Google Scholar 

  24. A. Seifert, F. Lange, and J. Speck, J. Mater. Res. 10, 680 (1995).

    Article  CAS  Google Scholar 

  25. Powder Diffraction File (Joint Committee on Powder Diffraction Standards, 1992), cards 33-664, 42-1468, 20-631.

  26. D. F. Shriver, The Manipulation of Air-Sensitive Compounds (Robert E. Krieger Publ. Co., Malabar, FL, 1982).

    Google Scholar 

  27. S. Hirano, private communication.

  28. P. G. Clem and D. Payne, in Ferroelectric Thin Films IV, edited by B. A. Tuttle, S. B. Desu, R. Ramesh, and T. Shiosaki (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995).

  29. J. W. Hutchinson and Z. Suo, in Applied Mechanics, edited by J. W. Hutchinson and T. Y. Wu (Academic Press, San Diego, CA, 1991), Vol. 28.

  30. T. K. Halstead, J. Chem. Phys. 53 (9), 3427 (1970).

    Article  CAS  Google Scholar 

  31. K. T. Miller, F. F. Lange, and D. B. Marshall, J. Mater. Res. 5, 151 (1990).

    Article  CAS  Google Scholar 

  32. A. Seifert, A. Vojta, J. S. Speck, and F. F. Lange, J. Mater. Res. 11, 1470–1482 (1996).

    Article  CAS  Google Scholar 

  33. K. T. Miller and F. F. Lange, J. Mater. Res. 6, 2387 (1991).

    Article  CAS  Google Scholar 

  34. J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (Wiley, New York, 1982), Chap. 19.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derouin, T.A., Lakeman, C.D.E., Wu, X.H. et al. Effect of lattice mismatch on the epitaxy of sol-gel LiNbO3 thin films. Journal of Materials Research 12, 1391–1400 (1997). https://doi.org/10.1557/JMR.1997.0189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0189

Navigation