Skip to main content
Log in

Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A chemical approach to the formation of columnar defects involving the growth and incorporation of MgO nanorods into high temperature superconductors (HTS’s) has been developed. MgO nanorods were incorporated into Bi2Sr2CaCu2Oz, Bi2Sr2Ca2Cu3Oz, and Tl2Ba2Ca2Cu3Oz superconductors at areal densities up to 2 × 1010/cm2. Microstructural analyses of the composites demonstrate that the MgO nanorods create a columnar defect structure in the HTS matrices, form a compositionally sharp interface with the matrix, and self-organize into orientations perpendicular and parallel to the copper oxide planes. Measurements of the critical current density demonstrate significant enhancements in the MgO nanorod/HTS composites at elevated temperatures and magnetic fields compared with reference samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Lubkin, Phys. Today 49, 48 (1996).

    Article  Google Scholar 

  2. P. M. Grant, Nature 375, 107 (1995).

    Article  CAS  Google Scholar 

  3. D. C. Larbalestier, Science 274, 736 (1996).

    Article  CAS  Google Scholar 

  4. D. J. Bishop, P. L. Grammel, D.A. Huse, and C.A. Murray, Science 255, 165 (1992).

    Article  CAS  Google Scholar 

  5. D. S. Fisher, M. P. A. Fisher, and D.A. Huse, Phys. Rev. B 43, 130 (1991).

    Article  CAS  Google Scholar 

  6. G. Blatter, M.V. Feigelman, V.B. Geshkenbein, A.I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

    Article  CAS  Google Scholar 

  7. M. Polak, J. A. Parrell, A. A. Polyanskii, A. E. Pashitski, and D. C. Larbalestier, Appl. Phys. Lett. 70, 1034 (1997).

    Article  CAS  Google Scholar 

  8. U. Welp, D. O. Gunter, G.W. Crabtree, W. Zhong, U. Balachandran, P. Haldar, R.S. Sokolowski, V.K. Vlasko-Vlasov, and N. Nikitenko, Nature 376, 44 (1995).

    Article  CAS  Google Scholar 

  9. D. P. Norton, A. Goyal, J. D. Budai, D.K. Christen, D.M. Kroeger, E.D. Specht, Q. He, B. Saffian, M. Paranthaman, C. E. Klabunde, D. F. Lee, B. C. Sales, and F. A. List, Science 274, 755 (1996).

    Article  CAS  Google Scholar 

  10. P. M. Grant, Nature 381, 559 (1996).

    Article  CAS  Google Scholar 

  11. D. C. Larbalestier, X. Y. Cai, Y. Feng, H. Edelman, A. Umezawa, G. N. Riley, Jr., and W. L. Carter, Physica C 221, 299 (1994).

    Article  CAS  Google Scholar 

  12. Q. Li, H.J. Wiesman, M. Suenaga, L. Motowidlo, and P. Haldar, Appl. Phys. Lett. 66, 637 (1995).

    Article  CAS  Google Scholar 

  13. P. Majewski, Adv. Mater. 6, 593 (1994).

    Article  CAS  Google Scholar 

  14. D. R. Nelson and V. M. Vinokur, Phys. Rev. Lett. 68, 2398 (1992).

    Article  CAS  Google Scholar 

  15. T. Hwa, P. Le Doussal, D.R. Nelson, and V. M. Vinokur, Phys. Rev. Lett. 71, 3545 (1993).

    Article  CAS  Google Scholar 

  16. L. Civale, A.D. Marwick, T.K. Worthington, M.A. Kirk, J. R. Thompson, L. Krusin-Elbaum, Y. Sun, J. R. Clem, and F. Holtzberg, Phys. Rev. Lett. 67, 648 (1991).

    Article  CAS  Google Scholar 

  17. R. C. Budhani, M. Suenaga, and S.H. Liou, Phys. Rev. Lett. 69, 3816 (1992).

    Article  CAS  Google Scholar 

  18. M. Konczykowski, N. Chikumoto, V. Vinokur, and M.V. Feigel’man, Phys. Rev. B 51, 3957 (1995).

    Article  CAS  Google Scholar 

  19. Y. Zhu, Z. X. Cai, R. C. Budhani, M. Suenaga, and D. O. Welch, Phys. Rev. B 48, 6436 (1993).

    Article  CAS  Google Scholar 

  20. J. R. Thompson, D. Paul, Z. L. Wang, D. M. Kroeger, and D. K. Christen, Appl. Phys. Lett. 67, 1007 (1995).

    Article  CAS  Google Scholar 

  21. L. Krusin-Elbaum, J. R. Thompson, R. Wheeler, A. D. Marwick, C. Li, S. Patel, D. T. Shaw, P. Lisowski, and J. Ullmann, Appl. Phys. Lett. 64, 3331 (1994).

    Article  Google Scholar 

  22. H. Safar, J. H. Cho, S. Fleshler, M. P. Maley, J. O. Willis, J. Y. Coulter, J. L. Ullmann, P. W. Lisowski, G. N. Riley, Jr., M. W. Rupich, J. R. Thompson, and L. Krusin-Elbaum, Appl. Phys. Lett. 67, 130 (1995).

    Article  CAS  Google Scholar 

  23. P. Le Doussal and D. R. Nelson, Physica C 232, 69 (1994).

    Article  CAS  Google Scholar 

  24. K. Fossheim, E. D. Tuset, T. W. Ebbessen, M. M. J. Treasy, and J. Schwarz, Physica C 248, 195 (1995).

    Article  CAS  Google Scholar 

  25. H. Dai, E. Wong, Y. Lu, S. Fan, and C. M. Lieber, Nature 375, 769 (1995).

    Article  CAS  Google Scholar 

  26. P. Yang and C. M. Lieber, Science 273, 1836 (1996).

    Article  CAS  Google Scholar 

  27. N. Adamopoulos, B. Soylu, Y. Yan, and J. E. Evetts, Physica C 242, 68 (1993).

    Article  Google Scholar 

  28. Y. S. Yuan, M. S. Wong, and S. S. Wang, J. Mater. Res. 11, 8 (1996).

    Article  CAS  Google Scholar 

  29. P. Yang and C. M. Lieber, Appl. Phys. Lett. 70, 3158 (1997).

    Article  CAS  Google Scholar 

  30. C. M. Lieber and P. Yang, patent pending, Ser. No. #08/606,892.

  31. H. Itoh, S. Utamapanya, J. V. Stark, K. J. Klabunde, and J. R. Schlup, Chem. Mater. 5, 71 (1993).

    Article  CAS  Google Scholar 

  32. A. Morales, P. Yang, and C. M. Lieber, J. Am. Chem. Soc. 116, 8360 (1994).

    Article  CAS  Google Scholar 

  33. C. Li, S. Patel, J. Ye, E. Narumi, D. T. Shaw, and T. Sato, Appl. Phys. Lett. 63, 2558 (1993).

    Article  CAS  Google Scholar 

  34. T. Brousse, G. Poullain, J. F. Hamet, H. Murray, and B. Raveau, Physica C 170, 545 (1990).

    Article  CAS  Google Scholar 

  35. H. Tabata, T. Kawai, M. Kanai, O. Murata, and S. Kawai, Jpn. J. Appl. Phys. 28, L430 (1989).

    Article  CAS  Google Scholar 

  36. W. L. Holstein and L. A. Parisi, J. Mater. Res. 11, 1349 (1996).

    Article  CAS  Google Scholar 

  37. C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).

    Article  Google Scholar 

  38. W. B. Campbell, in Whisker Technology, edited by A. P. Levitt (Wiley, New York, 1990), p. 15.

    Google Scholar 

  39. E. G. Wolff and T. D. Coskren, J. Am. Ceram. Soc. 48, 279 (1965).

    Article  CAS  Google Scholar 

  40. J. V. Stark, D. G. Park, I. Lagadic, and K. J. Klabunde, Chem. Mater. 8, 1904 (1996).

    Article  CAS  Google Scholar 

  41. D. R. Uhlmann, B. Chalmers, and K. A. Jackson, J. Appl. Phys. 35, 2986 (1964).

    Article  CAS  Google Scholar 

  42. Y. Nakamura, A. Endo, and Y. Shiohara, J. Mater. Res. 11, 1094 (1996).

    Article  CAS  Google Scholar 

  43. C. Kim, K. Kim, G. Hong, and H. Lee, J. Mater. Res. 10, 1605 (1995).

    Article  CAS  Google Scholar 

  44. A. Endo, H. Chauhan, T. Egi, and Y. Shiohara, J. Mater. Res. 11, 795 (1996).

    Article  CAS  Google Scholar 

  45. M. Murakami, Prog. Mater. Sci. 38, 311 (1994).

    Article  CAS  Google Scholar 

  46. Y. Nagai and K. Tsuru, Jpn. J. Appl. Phys. 29, L1600 (1990).

    Article  CAS  Google Scholar 

  47. M. Ohkuho, E. Brecht, G. Linker, J. Geerk, and O. Meyer, Appl. Phys. Lett. 69, 574 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, P., Lieber, C.M. Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites. Journal of Materials Research 12, 2981–2996 (1997). https://doi.org/10.1557/JMR.1997.0393

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0393

Navigation