Skip to main content
Log in

Diagnostics and Modeling of Nanopowder Synthesis in Low Pressure Flames

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Laser-induced fluorescence, thermophoretic sampling, laser light scattering, and emission spectroscopy have been used to probe low pressure hydrogen/oxygen flames in which 3–50 nm, loosely agglomerated oxide nanopowders have been synthesized at high production rates by the pyrolysis of precursor vapors, followed by condensation in the gas phase. These measurements have enabled the identification of pyrolysis, condensations, and particle growth regions in the flame. Flame simulations using a one-dimensional stagnation flow model, with complex chemistry, demonstrate that the chemical and thermal flame structure can be accurately predicted for flames without a precursor. Furthermore, some flame structure changes induced by the addition of a precursor can be simulated by addition of analogous species to the chemical mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y-J. Chen, N. G. Glumac, G. Skandan, and B. H. Kear, Mater. Lett. 34, 148 (1998).

    Article  Google Scholar 

  2. Y-J. Chen, N. G. Glumac, G. Skandan, and B. H. Kear, “High-rate Production of High Purity, ‘Non-agglomerated’ Oxide Nanopowders in Flames,” 1996 Fall National Meeting, American Chemical Society, Orlando, FL.

  3. Y. Chen, N. Glumac, B. H. Kear, and G. Skandan, Nanostructured Mater. 9, 101 (1997).

    Article  Google Scholar 

  4. S. L. Chung and J. L. Katz, Combustion and Flame 61, 271 (1985).

    Article  CAS  Google Scholar 

  5. Y. Xing, Ü.Ö. Köylü, and D. E. Rosner, Combust. Flame 107, 85 (1996).

    Article  CAS  Google Scholar 

  6. S. E. Pratsinis, W. Zhu, and S. Vemury, Powder Technology 86, 87 (1996).

    Article  CAS  Google Scholar 

  7. J. L. Katz and C-H. Hung, Twenty-third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1990).

    Google Scholar 

  8. S-L. Chung, M-S. Tsai, and H-D. Lin, Combust. Flame 85, 134 (1991).

    Article  CAS  Google Scholar 

  9. J. L. Katz and C-H. Hung, Combust. Sci. Technol. 82, 169 (1992).

    Article  CAS  Google Scholar 

  10. D. Lindackers, M. G. D. Strecker, and P. Roth, Nanostructured Mater. 4, 545 (1994).

    Article  CAS  Google Scholar 

  11. B. K. McMillin, P. Biswas, and M. R. Zachariah, J. Mater. Res. 11, 1552 (1996).

    Article  CAS  Google Scholar 

  12. G. Evans and R. Greif, Trans. ASME 109, 928 (1987).

    Article  CAS  Google Scholar 

  13. L. Talbot, R. K. Cheng, R. W. Schefer, and D. R. Willis, J. Fluid Mech. 101, 737 (1980).

    Article  Google Scholar 

  14. N.G. Glumac and D.G. Goodwin, Combustion and Flame 105, 321 (1996).

    Article  CAS  Google Scholar 

  15. J. A. Miller and C. T. Bowman, Prog. Energy Combust. Sci. 15, 287 (1989).

    Article  CAS  Google Scholar 

  16. R. J. Kee, F. M. Rupley, and J. A. Miller, Technical Report SAND89-8009, Sandia National Laboratories (1989).

  17. N. G. Glumac and Y-J. Chen, “Laser-Induced Fluorescence Measurements for Hydroxyl Radicals and Temperature in Nanopowder-producing Flames,” Laser Applications in Chemical and Environmental Analysis Conference, Optical Society of America, 1996.

  18. N. G. Glumac, Combust. Sci. Technol. 122, 383 (1997).

    Article  CAS  Google Scholar 

  19. M. R. Zachariah and D. R. F. Burgess, Jr., J. Aerosol Sci. 25, 487 (1994).

    Article  CAS  Google Scholar 

  20. P. E. Bengtsson and M. Alden, Appl. Phys. B 48, 155 (1989).

    Article  Google Scholar 

  21. V. I. Shukla, G. Skandan, and N. Glumac, unpublished.

  22. D. S. Dandy and S. R. Vosen, Combust. Sci. Technol. 82, 131 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glumac, N.G., Chen, YJ. & Skandan, G. Diagnostics and Modeling of Nanopowder Synthesis in Low Pressure Flames. Journal of Materials Research 13, 2572–2579 (1998). https://doi.org/10.1557/JMR.1998.0359

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0359

Navigation