Skip to main content
Log in

Annealing of mesoporous silica loaded with silver nanoparticles within its pores from isothermal sorption

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Influences of annealing on the structure of mesoporous silica loaded with silver (Ag) nanoparticles, and on the coarsening of Ag particles within pores of the host were investigated from isothermal sorption. Doping a small amount of Ag nanoparticles into pores of silica and subsequent annealing decreases the measured values of specific surface area and pore volume of porous silica significantly. This is attributed to the presence and coarsening of Ag particles within pores or channels between pores, which result in more and more isolated and unmeasured free spaces. The measured value of a specific surface area for the doped samples cannot represent the real value, which is, in fact, unable to be measured directly. During additional annealing, Ag particles within silica coarsen mainly according to the mechanism of formation of Ag adatoms on pore wall and diffusion of the adatoms along with pore walls. Only the larger particles located in the larger pores can continuously grow. The smaller particles and those located in the channels or pores with smaller dimension will disappear. The activation energy of the ripening process was estimated to be about 0.60 eV, and the migration barrier of Ag adatom on the pore wall of silica is about 0.10 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. L. Coffer, G. Beauchamp, and T. W. Zerda, J. Non-Cryst. Solids 142, 208 (1992).

    Article  CAS  Google Scholar 

  2. S. Rao, C. Karaguleff, A. Gabel, R. Fortenbery, C. Seaton, and G. Stegeman, Appl. Phys. Lett. 46, 801 (1985).

    Article  Google Scholar 

  3. Wu Chun-Guey and B. Thomas, Science 264, 1758 (1994).

    Google Scholar 

  4. M. Mennig, M. Schmitt, B. Kutsch, and H. Schmidt, SPIE Proceedings 2288, 120 (1994).

    Article  CAS  Google Scholar 

  5. P. Judeinstein and H. Schmidt, J. Sol-Gel Technol. 3, 189 (1994).

    Article  CAS  Google Scholar 

  6. T. K. Kudu and D. Chakravorty, Appl. Phys. Lett. 66, 3576 (1995).

    Article  Google Scholar 

  7. A. Chatterjee and D. Chakravory, J. Phys. D: Appl. Phys. 23, 1097 (1990).

    Article  CAS  Google Scholar 

  8. C. Suryanarayana, Int. Mater. Rev. 40 (2), 41 (1995).

    Article  CAS  Google Scholar 

  9. W. Cai, M. Tan, and L. Zhang, J. Phys. : Condens. Matter 9, 1995 (1997).

    CAS  Google Scholar 

  10. W. Cai, M. Tan, G. Wang, and L. Zhang, Appl. Phys. Lett. 69, 2980 (1996).

    Article  CAS  Google Scholar 

  11. H. Komiyama, A. Hayashi, and H. Inoue, Jpn. J. Appl. Phys. 24, L269 (1985).

    Article  Google Scholar 

  12. T. Yasuda, H. Komiyama, and K. Tanaka, Jpn. J. Appl. Phys. 26, 818 (1987).

    Article  CAS  Google Scholar 

  13. W. Cai and L. Zhang, Chin. Sci. Bull. 43 (7), 614 (1998).

    Article  CAS  Google Scholar 

  14. W. Cai and L. Zhang, J. Phys. : Condens. Matter 9 (34), 7257 (1997).

    Google Scholar 

  15. S. Sato, T. Murakta, T. Suzuki, and T. Ohgawara, J. Mater. Sci. 25, 4880 (1990).

    Article  CAS  Google Scholar 

  16. T. Murakta, S. Sato, T. Ohgawara, T. Natanabe, and T. Suzuki, J. Mater. Sci. 27, 1567 (1992).

    Article  Google Scholar 

  17. S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).

    Article  CAS  Google Scholar 

  18. U. Kreibig, J. Phys. F: Met. Phys. 4, 999 (1974).

    Article  CAS  Google Scholar 

  19. R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, Phys. Rev. B 8, 3689 (1973).

    Article  CAS  Google Scholar 

  20. E. B. Priestley, B. Abeles, and R. W. Cohen, Phys. Rev. B 12, 2121 (1975).

    Article  CAS  Google Scholar 

  21. M. A. Smithard, Solid State Commun. 13, 153 (1973).

    Article  CAS  Google Scholar 

  22. W. P. Halperin, Rev. Mod. Phys. 58, 533 (1986).

    Article  CAS  Google Scholar 

  23. W. Thomson, Philos. Mag. 42, 448 (1871).

    Article  Google Scholar 

  24. A. Wheeler, Catalysis 2, 116 (1955).

    Google Scholar 

  25. IUPAC Manual of Symbols and Terminology, Pure Appl. Chem. 31, 578 (1972).

  26. C. Chapon and C. R. Henry, Surf. Sci. 106, 152 (1981).

    Article  CAS  Google Scholar 

  27. S. Stoyanov and D. Kashchiev, in Current Topics in Materials Science, edited by E. Kaldis (North-Holland, Amsterdam, 1981), Vol. 7, p. 71, and references therein.

  28. J. J. Metois, J. C. Zanghi, R. Erre, and R. Kern, Thin Solid Films 22, 331 (1974).

    Article  CAS  Google Scholar 

  29. H. Schmeisser, Thin Solid Films 22, 83, 99 (1974).

    Article  CAS  Google Scholar 

  30. D. Kashchiev, Surf. Sci. 55, 477 (1976).

    Article  CAS  Google Scholar 

  31. A. J. Donohoe and J. L. Robins, Thin Solid Films 33, 363 (1976).

    Article  CAS  Google Scholar 

  32. L. Kuipers and R. E. Palmer, Phys. Rev. B 53 (12), R7646 (1996).

    Article  CAS  Google Scholar 

  33. I. M. Goldby, L. Kuipers, B. Von Issendorff, and R. E. Palmer, Appl. Phys. Lett. 69 (19), 2819 (1996).

    Article  CAS  Google Scholar 

  34. L. Bardotti, P. Jensen, A. Hoareau, M. Treilleux, and B. Cabaud, Phys. Rev. Lett. 74 (23), 4694 (1995).

    Article  CAS  Google Scholar 

  35. C. Dew, Van Siclen, Phys. Rev. Lett. 75(8), 1574 (1995).

  36. J. M. Wen, J. W. Evans, M. C. Bartelt, J. W. Burnett, and P. A. Thiel, Phys. Rev. Lett. 76 (4), 652 (1996).

    Article  CAS  Google Scholar 

  37. R. C. Weast, 1989–1990 CRC Handbook of Chemistry and Physics, 70th ed. (CRC Press, Inc., Boca Raton, FL, 1989), p. B-128.

  38. J. D. Verhoeven, Fundamentals of Physical Metallurgy (John Wiley and Sons, Inc., New York, 1975), p. 400.

  39. H. Brune, H. Roder, C. Boragno, and K. Kern, Phys. Rev. Lett. 73 (14), 1955 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, W., Zhang, L., Zhong, H. et al. Annealing of mesoporous silica loaded with silver nanoparticles within its pores from isothermal sorption. Journal of Materials Research 13, 2888–2895 (1998). https://doi.org/10.1557/JMR.1998.0395

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0395

Navigation