Skip to main content
Log in

Ultrasonic Linear and Nonlinear Behavior of Fatigued Ti–6Al–4V

  • Journal of Materials Research
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The change in ultrasonic nonlinear property of a titanium alloy subjected to cyclic loading has been studied, with an objective to develop a new characterization methodology for quantifying the level of damage in the material undergoing fatigue. In order to determine the degree of nonlinearity, the ultrasonic second harmonic generation technique has been used. The second harmonic signal was monitored during the fatigue process, and a substantial increase in the second harmonic amplitude (180% increase in nonlinear factor) was observed. This indicates that the second harmonic signal is very sensitive to the microstructural changes in the material caused by fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. J. Van Rijswick, Hydrides for Energy Storage (Proc. Int. Symp., Gelio, Norway, August, 1977), Vol. 2, p. 14.

  2. S. R. Ovshinsky, M. A. Fetcenko, and J. Ross, Science 260, 9 (1993).

    Article  Google Scholar 

  3. M. Yoshida and E. Akiba, J. Alloys Comp. 224, 121 (1995).

    Article  CAS  Google Scholar 

  4. J. M. Joubert, M. Latroche, A. Percheron-Guegan, and J. Bovet, J. Alloys Comp. 240, 219 (1996).

    Article  CAS  Google Scholar 

  5. E.A. Brandes and G. B. Brook, Smithells Metal Reference Book (Butterworth-Heinemamn, Oxford, 1992).

    Google Scholar 

  6. J. Huot, E. Akiba, T. Ogura, and Y. Ishido, J. Alloys Comp. 218, 101 (1995).

    Article  CAS  Google Scholar 

  7. J. Hout, E. Akiba, and Y. Ishido, J. Alloys Comp. 231, 85 (1995).

    Article  Google Scholar 

  8. E. Ronnerbr, D. Noreus, T. Sakai, and M. Tsukahara, J. Alloys Comp. 231, 90 (1995).

    Article  Google Scholar 

  9. S.K. Wu and C.M. Wayman, Acta Metall. 37, 2805 (1989).

    Article  CAS  Google Scholar 

  10. S. Miyazaki and C. M. Wayman, Acta Metall. 36, 181 (1988).

    Article  CAS  Google Scholar 

  11. M. Nishida, C. M. Wayman, and T. Honma, Metall. Trans. 17A, 1505 (1986).

    Article  CAS  Google Scholar 

  12. G. D. Sandrock, A. J. Perkins, and R. F. Henemann, Metall. Trans. 2, 2761 (1971).

    Article  Google Scholar 

  13. K. Chandra and G. P. Purdy, J. Appl. Phys. 39, 2176 (1968).

    Article  CAS  Google Scholar 

  14. M.B. Salamon, M. E. Meichle, and C.M. Wayman, Phys. Rev. B 31, 7306 (1985).

    Article  CAS  Google Scholar 

  15. C.M. Hwang, M. Meichle, M.B. Salamon, and C.M. Wayman, Philos. Mag. 47A, 9 (1983).

    Article  Google Scholar 

  16. J. E. Beiley, Acta Metall. 11, 267 (1963).

    Article  Google Scholar 

  17. A. E. De Veirman, A. A. Staals, and P. H. Notten, Philos. Mag. A 70, 837 (1994).

    Article  Google Scholar 

  18. M. Mccormock, M.E. Badding, B. Vyas, S.M. Iaharak, and D.W. Murphy, J. Electrochem. Soc. 143, 131 (1996).

    Article  Google Scholar 

  19. S. Wakao, H. Sawa, H. Nakano, S. Chubachi, and M. Abe, J. Less-Common Metals 131, 311 (1987).

    Article  CAS  Google Scholar 

  20. D. Fruchart, J. L. Soubeyroux, S. Miraglia, and S. Obbade, Z. Phys. Chemie 179, 225 (1994).

    Article  Google Scholar 

  21. J. M. Joubert, M. Latroche, and A. Percheron-Guegan, J. Alloys Comp. 231, 494 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frouin, J., Sathish, S., Matikas, T.E. et al. Ultrasonic Linear and Nonlinear Behavior of Fatigued Ti–6Al–4V. Journal of Materials Research 14, 12 (1999). https://doi.org/10.1557/JMR.1999.0176

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/JMR.1999.0176

Navigation