Skip to main content
Log in

Nanostructured Yttria Powders Via Gel Combustion

  • Journal of Materials Research
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanostructured yttria powders were prepared by a gel combustion technique. The technique involves exothermic decomposition of an aqueous citrate-nitrate gel. The decomposition is based on a thermally induced anionic redox reaction. A variety of yttria powders with different agglomerate structures can be made by altering the citrate-nitrate ratio γ. The gel with γ = 0.098 in situ yields nanostructured yttria powder at 258 °C that is porous and agglomerated with an average of 25 nm primary particles. Its specific surface area is 55 m2/g. The decomposition of the gels was investigated by simultaneous thermogravimetry analysis (TGA) and differential thermal analysis (DTA) experiments. The produced ashes and calcined powders are characterized by x-ray diffraction (XRD), ir spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brunauer, Emmett, and Teller (BET) analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Magistris, in Fast Ion Transport in Glasses, edited by B. Scrosati et al. (Kluwer, Dordrecht, 1992), p. 213.

    Google Scholar 

  2. T. Tsuchiya and T. Moriya, J. Non-Cryst. Solids 38/39, 323 (1980).

    Article  Google Scholar 

  3. A. Magistris, G. Chiodelli, and M. Villa, J. Power Sources 14, 87 (1985).

    Article  CAS  Google Scholar 

  4. G. Chiodelli, A. Magistris, and M. Villa, Solid State Ionics 18 & 19, 356 (1986).

    Article  Google Scholar 

  5. M. Scagliotti, M. Villa, and G. Chiodelli, J. Non-Cryst. Solids 93, 350 (1987).

    Article  CAS  Google Scholar 

  6. M. Villa, M. Scagliotti, and G. Chiodelli, J. Non-Cryst. Solids 94, 101 (1987).

    Article  CAS  Google Scholar 

  7. J. D. Mackenzie, in Ultrastructure Processing of Glasses, Ceramics, and Composites, edited by L. L. Hench and D. R. Ulrich (Wiley, New York, 1984), p. 15.

    Google Scholar 

  8. C.J. Brinker and G. W. Scherer, Sol-Gel Science (Academic Press, Boston, 1990), Chap. XII.

  9. N. Tohge and J. D. Mackenzie, J. Non-Cryst. Solids 68, 411 (1984).

    Article  CAS  Google Scholar 

  10. C.J. Brinker, K. J. Ward, K.D. Keefer, E. Holupka, and P. J. Bray, in Better Ceramics Through Chemistry II, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 57.

    Google Scholar 

  11. C.J. Brinker, B.C. Bunker, D. R. Tallant, and K. J. Ward, J. de Chimie Phys. 83, 851 (1986).

    Article  CAS  Google Scholar 

  12. N. Venkatasubramanian, B. Wade, P. Desai, A. S. Abhiraman, and L.T. Gelbaum, J. Non-Cryst. Solids 130, 144 (1991).

    Article  CAS  Google Scholar 

  13. C-W. Hsieh, A. S.T. Chiang, C-C. Lee, and S-J. Yang, J. Non-Cryst. Solids 144, 53 (1992).

    Article  CAS  Google Scholar 

  14. P. Mustarelli, E. Quartarone, C. Tomasi, and A. Magistris, J. Non-Cryst. Solids 215, 51 (1997).

    Article  CAS  Google Scholar 

  15. P. Mustarelli, E. Quartarone, and F. Benevelli, Mater. Res. Bull. 32, 679 (1997).

    Article  CAS  Google Scholar 

  16. G. Carturan, B. Ancora, V. Gottardi, and M. Guglielmi, J. Non-Cryst. Solids 82, 110 (1986).

    Article  CAS  Google Scholar 

  17. J. Livage, P. Barboux, M. T. Vandenborre, C. Schmutz, and F. Taulelle, J. Non-Cryst. Solids 147 & 148, 18 (1992).

    Article  Google Scholar 

  18. B.I. Lee, W. D. Samuels, L-Q. Wang, and G. J. Exharos, J. Mater. Res. 11, 134 (1996).

    Article  CAS  Google Scholar 

  19. C.J. Barbè, M. A. Harmer, and G.W. Scherer, J. Am. Ceram. Soc. 78, 2033 (1995).

    Article  Google Scholar 

  20. S-I. Hirano, T. Yogo, K-I. Kikuta, K-I. M. Ichida, and A. Nakamura, J. Am. Ceram. Soc. 78, 2956 (1995).

    Article  CAS  Google Scholar 

  21. P.N. Kumta and M. A. Sriram, J. Mater. Sci. 28, 1097 (1993); R. Hsu, J. Y. Kim, P. N. Kumta, and T. P. Feist, Chem. Mater. 8, 107 (1996).

    Google Scholar 

  22. A.F. Ali, P. Mustarelli, and A. Magistris, Mater. Res. Bull. 33, 697 (1998).

    Article  CAS  Google Scholar 

  23. A. Magistris, G. Chiodelli, and M. Villa, J. Power Sources 14, 87 (1985).

    Article  CAS  Google Scholar 

  24. C. Tomasi, P. Mustarelli, N. A. Hawkins, and V. Hill, Thermochim. Acta 278, 9 (1996).

    Article  CAS  Google Scholar 

  25. S-P. Szu, L.C. Klein, and M. Greenblatt, J. Non-Cryst. Solids 143, 21 (1992).

    Article  CAS  Google Scholar 

  26. C. Fernandez-Lorenzo, L. Esquivias, P. Barboux, J. Maquet, and F. Taulelle, J. Non-Cryst. Solids 176, 189 (1994).

    Article  CAS  Google Scholar 

  27. H. Maeda, M. Iwasaki, A. Yasumori, and M. Yamane, J. Non-Cryst. Solids 121, 61 (1990).

    Article  CAS  Google Scholar 

  28. J. Chang, A. Yasumori, and M. Yamane, J. Non-Cryst. Solids 134, 32 (1991).

    Article  CAS  Google Scholar 

  29. T.Y. Tien and F. A. Hummel, J. Am. Ceram. Soc. 44, 206 (1961).

    Article  CAS  Google Scholar 

  30. J. Krogh-Moe, Acta Crystallogr. 15, 190 (1962); J. Krogh-Moe, Acta Crystallogr. 24 179 (1968).

  31. B.S. R. Sastry and F. A. Hummel, J. Am. Ceram. Soc. 41, 7 (1959).

    Article  Google Scholar 

  32. C.H. Chang and J. L. Margrave, Mater. Res. Bull. 2, 929 (1967).

    Article  CAS  Google Scholar 

  33. D.P. Button, R. Tandon, C. King, M. H. Velèz, H. L. Tuller, and D.R. Uhlmann, J. Non-Cryst. Solids 49, 129 (1982).

    Article  CAS  Google Scholar 

  34. P.J. Bray and J. G. O’Keefe, Phys. Chem. Glasses 4, 37 (1963); S. Greenblatt and P. J. Bray, Phys. Chem. Glasses 8, 213 (1967); S.A. Feller, W. D. Dell, and P.J. Bray, J. Non-Cryst. Solids 104, 21 (1982).

    Google Scholar 

  35. F. Dachille and L. Dent-Glasser, Acta Crystallogr. 12 280 (1959).

  36. R.P. Bontchev and S. C. Sevov, Inorg. Chem. 35, 6910 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S., Sigmund, W. & Aldinger, F. Nanostructured Yttria Powders Via Gel Combustion. Journal of Materials Research 14, 15 (1999). https://doi.org/10.1557/JMR.1999.0204

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/JMR.1999.0204

Navigation