Skip to main content
Log in

Radiation stability of gadolinium zirconate: A waste form for plutonium disposition

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Zirconate and titanate pyrochlores were subjected to 1 MeV of Kr+ irradiation. Pyrochlores in the Gd2(ZrxTi1-x)2O7 system (x = 0, 0.25, 0.5, 0.75, 1) showed a systematic change in the susceptibility to radiation-induced amorphization with increasing Zr content. Gd2Ti2O7 amorphized at relatively low dose (0.2 displacement per atom at room temperature), and the critical temperature for amorphization was 1100 K. With increasing zirconium content, the pyrochlores became increasingly radiation resistant, as demonstrated by the increasing dose and decreasing critical temperature for amorphization. Pyrochlores highly-enriched in Zr (Gd2Zr2O7, Gd2Zr1.8Mg0.2O6.8, Gd1.9Sr0.1Zr1.9Mg0.1O6.85, and Gd1.9Sr0.1Zr1.8Mg0.2O6.75) could not be amorphized, even at temperature as low as 25 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.K.S. Pillay, Radwaste Jan, 60 (1996).

  2. G. Taubes, Science 263, 629 (1994).

    Article  CAS  Google Scholar 

  3. W. Stoll, MRS Bull. 23(3), 6 (1998).

    Article  CAS  Google Scholar 

  4. V.M. Oversby, C.C. McPheeters, C. Degueldre, and J.M. Paratte, J. Nucl. Mater. 245, 17 (1997).

    Article  CAS  Google Scholar 

  5. Panel on Reactor-Related Options for the Disposition of Excess Weapons Plutonium, National Research Council, Management and Disposition of Excess Weapons Plutonium: Reactor-Related Options (National Academy Press, Washington, D.C., 1995).

    Google Scholar 

  6. Record of Decision for the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic Environmental Impact Statement, Jan. 14, 1997 (U.S. Department of Energy, Washington, DC, 1997).

  7. Hj. Matzke and J. van Geel, in Disposal of Weapon Plutonium Approaches and Prospects, NATO ASI series, edited by E.R. Merz and C.E. Walter (Kluwer Academic Publishers, Dordrecht, 1996), p. 93.

    Chapter  Google Scholar 

  8. R.C. Ewing, W.J. Weber, and W. Lutze, in Disposal of Weapon Plutonium, edited by E.R. Merz and C.E. Walter (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996), p. 65.

    Chapter  Google Scholar 

  9. R.C. Ewing, Proc. Natl. Acad. Sci. USA 96, 3432 (1999).

    Article  CAS  Google Scholar 

  10. A.E. Ringwood, S.E. Kesson, N.G. Ware, W. Hibberson, and A. Major, Nature 278, 219 (1979).

    Article  CAS  Google Scholar 

  11. A. Jostsons, E.R. Vance, R.A. Day, K.P. Hart, and M.W.A. Stewart, in Proceedings of International Topical Meeting on Nuclear and Hazardous Waste Management, Spectrum, 2032 (1996).

  12. I. W. Donald, B. L. Metcalfe and R.N.J. Taylor, J. Mater. Sci. 32, 5851 (1997)

    Article  CAS  Google Scholar 

  13. R.C. Ewing, W.J. Weber, and F.W. Clinard, Jr., Prog. Nucl. Energy 29, 63 (1995).

    Article  CAS  Google Scholar 

  14. W.J. Weber, R.C. Ewing, C.R.A. Catlow, T. Diaz de la Rubia, L.W. Hobbs, C. Kinoshita, Hj. Matzke, A.T. Motta, M. Nastasi, E.K.H. Salje, E.R. Vance, and S.J. Zinkle, J. Mater. Res. 13, 1434 (1998).

    Article  CAS  Google Scholar 

  15. M.A. Subramanian, G. Aravamudan, and G.V. Subba Rao, Prog. Solid State Chem. 15, 55 (1983).

    Article  CAS  Google Scholar 

  16. B.C. Chakoumakos and R.C. Ewing, in Scientific Basis for Nuclear Waste Management VIII, edited by C.M. Jantzen, J.A. Stone, and R.C. Ewing (Mater. Res. Soc. Symp. Proc. 44, Pittsburgh, PA, 1985), pp. 641–646.

  17. S.S. Shoup, C.E. Bamberger, and R.G. Haire, J. Am. Ceram. Soc. 79, 1489 (1996).

    Article  CAS  Google Scholar 

  18. F.W. Clinard, Jr., D.E. Peterson, D.L. Rohr, and L.W. Hobbs, J. Nucl. Mater. 126, 245 (1989).

    Article  Google Scholar 

  19. T. Muromura and Y. Hinatsu, J. Nucl. Mater. 151, 55 (1987).

    Article  CAS  Google Scholar 

  20. G.R. Lumpkin and R.C. Ewing, Phys. Chem. Min. 16, 2 (1988).

    Article  CAS  Google Scholar 

  21. J.W. Wald and P. Offerman, in Scientific Basis for Nuclear Waste Management V, edited by W. Lutze (Mater. Res. Soc. Symp. Proc. 11, Pittsburgh, PA, 1982), pp. 369–378.

  22. W.J. Weber, J.W. Wald, and Hj. Matzke, Mater. Lett. 3, 173 (1985).

    Article  CAS  Google Scholar 

  23. W.J. Weber, J.W. Wald, and Hj. Matzke, J. Nucl. Mater. 138, 196 (1986).

    Article  CAS  Google Scholar 

  24. W.J. Weber, N.J. Hess, and G.D. Maupin, Nucl. Instrum. Meth. B65, 102 (1992).

    Article  CAS  Google Scholar 

  25. W.J. Weber and N.J. Hess, Nucl. Instrum. Meth. B80/81, 1245 (1993).

    Article  Google Scholar 

  26. S.X. Wang, L.M. Wang, R.C. Ewing, G.S. Was, and G.R. Lumpkin, Nucl. Instrum. Meth. B148, 704 (1999).

    Article  Google Scholar 

  27. B.D. Begg, W.J. Weber, R. Devanathan, J.P. Icenhower, S. Thevuthasan, and B.P. McGrail, in Waste Management Science and Technology in the Ceramic and Nuclear Industries, edited by G.L. Smith, G.T. Chandler, B. Mobasher (The American Ceramic Society, Westerville, OH, 1999, in press).

    Google Scholar 

  28. K.L. Smith, N.J. Zaluzec, and G.R. Lumpkin, J. Nucl. Mater. 250, 36 (1997).

    Article  CAS  Google Scholar 

  29. P.K. Moon and H.L. Tuller, in Solid State Ionics, edited by G. Nasri, R.A. Huggins, and D.F. Shriver (Mater. Res. Soc. Symp. Proc. 135, Pittsburgh, PA, 1989), pp. 149–163.

  30. R.C. Ewing and L.M. Wang, Nucl. Instrum. Meth. B65, 319 (1992).

    Article  CAS  Google Scholar 

  31. A. Meldrum, L.A. Boatner, S.J. Zinkle, S.X. Wang, L.M. Wang, and R.C. Ewing, Can. Miner. 37, 207 (1999).

    CAS  Google Scholar 

  32. I.J. McColm, Ceramic Science for Materials Technologists (Chapman and Hall, New York, 1983), p. 280.

    Google Scholar 

  33. N. Yu, K.E. Sickafus, P. Kodali, and M. Nastasi, J. Nucl. Mater. 244, 266 (1997).

    Article  CAS  Google Scholar 

  34. A.E. Ringwood, S.E. Kesson, K.D. Reeve, D.M. Levins, and E.J. Ramm, in Radioactive Waste Forms for the Future, edited by W. Lutz and R.C. Ewing (North-Holland, New York, 1988), pp. 233–334.

    Google Scholar 

  35. K.P. Hart, E.R. Vance, M.W.A. Stewart, J. Weir, M.L. Carter, M. Hambley, A. Brownscombe, R.A. Day, S. Leung, C.J. Ball, B. Ebbinghaus, L. Gray, and T. Kan, in Scientific Basis for Nuclear Waste Management XXI, edited by I.G. McKinley and C. McCombie (Mater. Res. Soc. Symp. Proc. 506, Warrendale, PA, 1998), pp. 161–168.

  36. I. Hayakawa and H. Kamizono, J. Mater. Sci. 28, 513 (1993).

    Article  CAS  Google Scholar 

  37. N.C. Dutta, Radiochim. Acta 79, 25 (1997).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S.X., Begg, B.D., Wang, L.M. et al. Radiation stability of gadolinium zirconate: A waste form for plutonium disposition. Journal of Materials Research 14, 4470–4473 (1999). https://doi.org/10.1557/JMR.1999.0606

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0606

Navigation