Skip to main content
Log in

Thermochemistry of Si6–zAlzOzN8–z(z = 0 to 3.6) materials

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Enthalpies of formation were determined for β-sialon phases (Si6–zAlzOzN8–z, z = 0.46 to 3.6) by high-temperature oxidative drop solution calorimetry using an alkali-metal borate (52 wt% LiBo2; 48 wt% NaBO2) solvent. Oxygen gas was bubbled through the melt to accelerate oxidation of the oxynitride samples during dissolution. Sialons near z = 2 appear less stable energetically than ones with higher or lower nitrogen content. A large configurational entropy contribution for sialons with z > 2 may further stabilize these materials. This larger free energy driving form may be the reason for success in pulse-activated processing of these materials. The enthalpies of formation further suggest that a greater driving form for oxynitride formation exists in batch synthesis using SiO2 rather than Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mitomo and G. Petzow, MRS Bull. 20(2), 19 (1995).

    Article  CAS  Google Scholar 

  2. M.J. Hoffman and G. Petzow, in Silicon Nitride Ceramics— Scientific and Technological Advances, edited by I-W. Chen, P.F. Becher, M. Mitomo, G. Petzow, and T-S. Yen (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), p. 3.

  3. K.H. Jack, J. Mater. Sci. 11, 1135 (1976).

    Article  CAS  Google Scholar 

  4. Y. Oyama and O. Kamigaito, Jpn. J. Appl. Phys. 10, 1637 (1971).

    Article  CAS  Google Scholar 

  5. K.H. Jack and W.I. Wilson, Nat. Phys. Sci. 238, 28 (1972).

    Article  Google Scholar 

  6. M.N. Rahaman, F.L. Riley, and R.J. Brook, J. Am. Ceram. Soc. 63, 648 (1980).

    Article  CAS  Google Scholar 

  7. S. Umebayashi, K. Kishi, E. Tani, and K. Kobayashi, Yogyo Kyokaishi 92, 35 (1984).

    Article  CAS  Google Scholar 

  8. T. Ekström, P. O. Käu, M. Nygren, and P.O. Olsson, J. Mater. Sci. 24, 1853 (1989).

    Article  Google Scholar 

  9. J. Briggs, Mater. Res. Bull. 12, 1047 (1977).

    Article  CAS  Google Scholar 

  10. J.G. Lee and I.B. Cutler, Am. Ceram. Soc. Bull. 58, 869 (1979).

    CAS  Google Scholar 

  11. P.D. Ramesh and K.J. Rao, J. Mater. Res. 9, 1929 (1994).

    Article  CAS  Google Scholar 

  12. J. Lis, S. Majorowski, J.A. Puszynski, and V. Hlavacek, Ceram. Bull. 70, 1658 (1991).

    CAS  Google Scholar 

  13. S. Elder, F.J. Disalvo, L. Topor, and A. Navrotsky, Chem. Mater. 5, 1545 (1993).

    Article  CAS  Google Scholar 

  14. J. McHale, G.R. Kowach, A. Navrotsky, and F.J. Disalvo, Chem. Eur. J. 2, 1514 (1996).

    Article  CAS  Google Scholar 

  15. J.M. McHale, A. Navrostsky, G.R. Kowach, V.E. Balbarin, and F.J. DiSalvo, Chem. Mater. 9, 3096 (1997).

    Article  CAS  Google Scholar 

  16. A. Navrotsky, S.H. Risbug, J-J. Liang, and V.J. Leppert, J. Phys. Chem. B 101, 9433 (1997).

    Article  CAS  Google Scholar 

  17. J-J. Liang, L. Topor, A. Navrotsky, Y. Kanke, and M. Mitomo, J. Mater. Sci. 14, 1959 (1999).

    CAS  Google Scholar 

  18. S.H. Risbud and C.H. Shan, Mater. Sci. Eng. A204, 1460 (1995).

    Google Scholar 

  19. I.J. Shon, Z.A. Munir, K. Yamazaki, and K. Shoda, J. Am. Ceram. Soc. 79, 875 (1996).

    Article  Google Scholar 

  20. Y. Miyamoto, K. Tanaka, M. Shimada, and M. Jouzumi, in Ceramic Materials and Components for Engines, edited by W. Bunk and H. Hausner (Deutsche Keramische Gesellschaft, Luebeck-Travemuende, Germany, 1986), p. 271.

    Google Scholar 

  21. N. Ingelström and T. Ekström, Proceedings of International Conference on Hot Isostatic Pressing, Lulea, Sweden, 15–16 June 1987 (Centek, Sweden, 1988).

    Google Scholar 

  22. A.C. Larson and R.B. Von Dreele, GSAS: General Structure Analysis System (Los Alamos National Laboratory, Los Alamos, NM, 1994).

    Google Scholar 

  23. A. Navrotsky, Phys. Chem. Miner. 2, 89 (1977).

    Article  CAS  Google Scholar 

  24. A. Navrotsky, Phys. Chem. Miner. 24, 222 (1997).

    Article  CAS  Google Scholar 

  25. M. Mitomo, N. Kuramoto, M. Tsutsumi, and H. Suzuki, Yogyo-Kyokaishi 86, 26 (1978).

    Article  Google Scholar 

  26. P.L. Land, J.M. Wimmer, R.W. Burns, and N.S. Choudbury. J. Am. Ceram. Soc. 61, 56 (1978).

    Article  CAS  Google Scholar 

  27. A. Takase, S. Umebayashi, and K. Kishi, J. Mater. Sci. Lett. 1, 529 (1982).

    Article  CAS  Google Scholar 

  28. M. Haviar and Ø. Johannesen, Adv. Ceram. Mater. 3, 405 (1988).

    Article  CAS  Google Scholar 

  29. M.W. Chase, Jr., C.A. Davis, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud, J. Phys. Chem. Ref. Data 14, Suppl. 1, part II, 1540 (1985).

    Google Scholar 

  30. A. Navrotsky, Am. Mineral. 79, 589 (1994).

    CAS  Google Scholar 

  31. R.A. Robie and B.S. Hemingway, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and high temperatures, U.S. Geol. Survey Bull. 2131 (U.S. Geological Survey, Washington, D.C., 1995).

    Google Scholar 

  32. L. Dumitrescu and B. Sundman, J. Eur. Ceram. Soc. 15, 239 (1995).

    Article  CAS  Google Scholar 

  33. M. Mitomo, N. Kuramoto, and Y. Inomata, J. Mater. Sci. 14, 2309 (1979).

    Article  CAS  Google Scholar 

  34. S. Bandyophadyay and J. Mukerji, J. Am. Ceram. Soc. 70, C-273 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, JJ., Navrotsky, A., Leppert, V.J. et al. Thermochemistry of Si6–zAlzOzN8–z(z = 0 to 3.6) materials. Journal of Materials Research 14, 4630–4636 (1999). https://doi.org/10.1557/JMR.1999.0626

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0626

Navigation