Skip to main content
Log in

Local heating associated with crack tip plasticity in Zr–Ti–Ni–Cu–Be bulk amorphous metals

  • Journal of Materials Research
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Deformation in metallic glasses is generally considered to arise from flow in localized shear bands, where adiabatic heating is thought to reduce glass viscosity. Evidence has been inferred from the veined fracture surfaces and molten droplets reported for metallic glasses. In this work, the detailed spatially resolved surface temperature increase and subsequent dissipation associated with crack tip plasticity in a Zr–Ti–Ni–Cu–Be bulk metallic glass is characterized for the first time. Maximum temperatures of up to 54.2 K were estimated from a heat conduction model and shown to be in excellent agreement with a nonhardening plasticity model for the heat generated by a propagating crack. Local cooling was also observed and shown to be consistent with thermoelastic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.L. Johnson and A. Peker, in Science and Technology of Rapid Solidification and Processing, edited by M. A. Otooni (Kluwer Academic Publishers, The Netherlands, 1995), p. 25.

    Chapter  Google Scholar 

  2. H.A. Bruck, T. Christman, A. J. Rosakis, and W.L. Johnson, Scripta Metall. 30, 429 (1994).

    Article  CAS  Google Scholar 

  3. R.D. Conner, A. J. Rosakis, W. L. Johnson, and D.M. Owen, Scripta Metall. 37, 1373 (1997).

    Article  CAS  Google Scholar 

  4. C.J. Gilbert, R. O. Ritchie, and W.L. Johnson, Appl. Phys. Lett. 71, 476 (1997).

    Article  CAS  Google Scholar 

  5. P. Lowhaphandu and J.J. Lewandowski, Scripta Metall. 38, 1811 (1998).

    Article  CAS  Google Scholar 

  6. F. Spaepen, Acta Metall. 25, 407 (1977).

    Article  CAS  Google Scholar 

  7. H.A. Bruck, A.J. Rosakis, and W. L. Johnson, J. Mater. Res. 11, 503 (1996).

    Article  CAS  Google Scholar 

  8. A. Leonhard, L. Q. Xing, M. Heilmaier, A. Gebert, J. Eckert, and L. Schultz, in Nanostruct. Mater. 10 (1998), in press.

  9. H. Kato and A. Inoue, Mater. Trans. JIM 38, 793 (1997).

    Article  CAS  Google Scholar 

  10. R. Doblione, S. Spriano, and L. Battezzati, Nanostruct. Mater. 8, 447 (1997).

    Article  Google Scholar 

  11. V.Z. Bengus, E. D. Tabachnikova, S.E. Shumilin, Y. I. Golovin, M.V. Makarov, A. A. Shibkov, J. Miskuf, K. Csach, and V. Ocelik, Int. J. Rapid Solid. 8, 21 (1993).

    CAS  Google Scholar 

  12. C.T. Liu, L. Heatherly, D. S. Easton, C. A. Carmichael, J. H. Scheibel, C.H. Chen, J.L. Wright, M.H. Yoo, J. A. Horton, and A. Inoue, Metall. Trans. A 29A, 1811 (1998).

    Article  CAS  Google Scholar 

  13. K.M. Flores and R.H. Dauskardt, Stanford University, unpublished.

  14. J. M. Krafft and G. R. Irwin, in Fracture Toughness Testing and Its Applications (ASTM-STP 381, Philadelphia, PA, 1965), p. 114.

  15. J. R. Rice and N. Levy, in Physics of Strength and Plasticity, edited by A.S. Argon (MIT Press, Cambridge, MA, 1969), p. 277.

    Google Scholar 

  16. A.T. Zehner and A. J. Rosakis, J. Mech. Phys. Solids 39, 385 (1991).

    Article  Google Scholar 

  17. A.T. Zehner and A.J. Rosakis, in Experimental Techniques in Fracture, edited by J. S. Epstein (VCH Publishers, Inc., New York, 1993), p. 125.

    Google Scholar 

  18. J. D. Bryant, D.D. Makel, and H. G. F. Wilsdorf, in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena (Marcel Dekker, Inc., New York, 1986), p. 723.

  19. H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon Press, Oxford, U.K., 1959), pp. 256, 258.

  20. G.I. Taylor and H. Quinney, Proc. R. Soc. London 143, 307 (1934).

    Google Scholar 

  21. M.B. Bever, D.L. Holt, and A.L. Titchner, Prog. Mater. Sci. 17, 192 (1973).

    Article  Google Scholar 

  22. F.A. McClintock, Fracture: An Advanced Treatise (Academic Press, New York, 1971), Vol. 3, p. 47.

  23. G.C. Sih and D. Y. Tzou, Theor. Appl. Frac. Mech. 6, 103 (1986).

    Article  Google Scholar 

  24. J. F. Nye, Physical Properties of Crystals (Oxford Science Publications, Oxford, U.K., 1985), p. 176.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores, K.M., Dauskardt, R.H. Local heating associated with crack tip plasticity in Zr–Ti–Ni–Cu–Be bulk amorphous metals. Journal of Materials Research 14, 638–643 (1999). https://doi.org/10.1557/JMR.1999.0642

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0642

Navigation