Skip to main content
Log in

Ultrafine MnFe2O4 powder preparation by combusting the coprecipitate with and without Mg2+ or Zn2+ additives

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ultrafine MnFe2O4 powder with its crystallites less than 100 nm was prepared using a combustion process. The coprecipitates containing the stoichiometric amount of Mn2+ and Fe3+ to form MnFe2O4 were prepared by dissolving the required metallic nitrates in de-ionized water and adding NH4OH to adjust the pH of the solutions to 9. The collected dried precipitates were then heated up to predetermined temperatures and then quickly contacted with the acetone spray. Upon contacting with the heated precipitates, the acetone spray was ignited. The combustion of acetone caused the precipitates to form crystalline MnFe2O4 without chemical segregation. The crystallinity of MnFe2O4 powder so obtained depended on the ignition temperature of acetone spray. MnFe2O4 powder obtained at acetone ignition temperature of 773 K had higher crystallinity than that obtained at acetone ignition temperature of 523 K. The presence of a small amount of Mg2+ or Zn2+ in the composition of the coprecipitates promoted the mobility of constituent ions of the combusted powder and resulted in bigger MnFe2O4 crystallites at a lower acetone ignition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Mendelovici, R. Villalba, and A. Sagarzazu, J. Mater. Sci. Lett. 9, 28 (1990).

    Article  CAS  Google Scholar 

  2. S. Komarneni, E. Fregeau, E. Breval, and R. Roy, J. Am. Ceram. Soc. 7, C-26 (1988).

    Google Scholar 

  3. D.W. Sproson, G.L. Messing, and T.J. Gardner, Ceram. Int. 12, 3 (1986).

    Article  CAS  Google Scholar 

  4. A.M. Gadalla and H. Yu, J. Mater. Res. 5, 2923 (1990).

    Article  CAS  Google Scholar 

  5. H. Yu and A.M. Gadalla, J. Mater. Res. 11, 663 (1996).

    Article  CAS  Google Scholar 

  6. P.K. Gallagher, H.M. O’Bryan, Jr., F. Schrey, and F.R. Monforte, Ceram. Bull. 48, 1053 (1969).

    CAS  Google Scholar 

  7. A.C.C. Tesung and J.R. Goldstein, J. Mater. Sci. 7, 1383 (1972).

    Article  Google Scholar 

  8. D.W. Johnson, Jr., Ceram. Bull. 60, 221 (1981).

    CAS  Google Scholar 

  9. E.B. Rigby, W.D. Kehr, and C.B. Meldrum, IEEE Trans. Magn. 20, 1506 (1984).

    Article  Google Scholar 

  10. T. Sato, K. Haneda, M. Seki, and T. Iijima, Appl. Phys. A. 50, 13 (1990).

    Article  Google Scholar 

  11. Y. Torii, A. Tsuzuki, K. Kato, Y. Uwamino, B.H. Choi, and M.J. Lee, J. Mater. Sci. 31, 2603 (1996).

    Article  CAS  Google Scholar 

  12. S.P. Chaudhuri and I. Roy, Br. Ceram. Trans. 94, 250 (1995).

    CAS  Google Scholar 

  13. P.P. Bakare, C.E. Deshpande, J.J. Shrotri, M.P. Gupta, and S.K. Date, Ceram. Int. 13, 247 (1987).

    Article  CAS  Google Scholar 

  14. M.N. Sankarshana Murthy, C.E. Deshpande, P.P. Bakare, and J.J. Shrotri, Bull. Chem. Soc. Jpn. 52, 571 (1979).

    Article  CAS  Google Scholar 

  15. Z.X. Tang, C.M. Sorensen, K.J. Kilabunde, and G.C. Hadjipanayis, J. Colloid Interface Sci. 146, 38 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, HF., Zhong, WB. Ultrafine MnFe2O4 powder preparation by combusting the coprecipitate with and without Mg2+ or Zn2+ additives. Journal of Materials Research 15, 170–175 (2000). https://doi.org/10.1557/JMR.2000.0028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0028

Navigation