Skip to main content
Log in

Nickel oxide–silica and nickel–silica aerogel and xerogel nanocomposite materials

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The sol-gel method was used to prepare nickel oxide–silica and nickel–silica nanocomposite materials and the corresponding silica matrices. Different drying conditions were used to obtain aerogel and xerogel materials. The samples were characterized by thermal analysis, x-ray diffraction, N2–physisorption, transmission electron microscopy techniques, and infrared spectroscopy. Aerogel samples had a much higher surface area than the xerogel samples; moreover, different supercritical drying conditions gave rise to a different porous structure, which influenced the size and distribution of the nanoparticles in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Birringer, Mater. Sci. Eng. A 117, 33 (1989).

    Article  Google Scholar 

  2. H. Gleiter, J. Appl. Crystallogr. 24, 79 (1991).

    Article  CAS  Google Scholar 

  3. R.W. Siegel, J. Phys. Chem. Solids 55, 1097 (1994).

    Article  CAS  Google Scholar 

  4. S. Komarneni, J. Mater. Chem. 2, 1219 (1992).

    Article  CAS  Google Scholar 

  5. R.E. Newnham, S.E. McKinstry, and H. Ikaua, in Multifunctional Ferroic Nanocomposites, edited by A. Buckley, G. Gallagher-Daggitt, F.E. Karasz, and D.R. Ulrich (Mater. Res. Soc. Symp. Proc. 175, Pittsburgh, PA, 1990), pp. 161–172.

  6. C.J. Brinker and G.W. Scherer. Sol-gel Science (Academic Press, San Diego, CA, 1990).

    Google Scholar 

  7. Sol-Gel technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes, edited by C.L. Klein (Noyes Publication, Park Ridge, NJ, 1988).

  8. A. Corrias, G. Mountjoy, G. Piccaluga, and S. Solinas, J. Phys. Chem. B 103, 10081 (1999).

    Article  CAS  Google Scholar 

  9. A. Corrias, G. Enans, G. Mountjoy, and G. Paschina, Phys. Chem. Chem. Phys. 5, 1045 (2000).

    Article  Google Scholar 

  10. S. Bruni, F. Cariati, M. Casu, A. Lai, A. Musinu, and G. Piccaluga, Nanostruct. Mater. 11, 573 (1999).

    Article  CAS  Google Scholar 

  11. M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, and G. Battaglin, Appl. Phys. Lett. 73, 288 (1998).

    Article  CAS  Google Scholar 

  12. A. Ueno, H. Suzuki, and Y. Kotera, J. Chem. Soc., Faraday Trans. I 79, 127 (1983).

    CAS  Google Scholar 

  13. A. Basumallick, K. Biswas, G.C. Das, and S. Mukherjee, J. Mater. Res. 10, 2938 (1995).

    Article  CAS  Google Scholar 

  14. M. Keane, Langmuir 13, 41 (1997).

    Article  CAS  Google Scholar 

  15. S. Roy, D. Chakravorty, and D.L. Agravol, J. Appl. Phys. 74, 4746 (1993).

    Article  CAS  Google Scholar 

  16. G.M. Pajonk and S.J. Teichner, in Aerogels, edited by J. Fricke (Springer Proceedings in Physics, Berlin, Germany, 1986).

    Google Scholar 

  17. G. Ennas, G. Marongiu, G. Paschina, G. Piccaluga, and S. Solinas, Euromat 1999 Proceedings (2000, in press).

  18. S. Brunauer, P.H. Emmet, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).

    Article  CAS  Google Scholar 

  19. B.C. Lippens and J.H. De Boer, J. Catal. 4, 319 (1965).

    Article  CAS  Google Scholar 

  20. A. Lecloux and J.P. Pirard, J. Colloid Interface Sci. 70, 265 (1979).

    Article  CAS  Google Scholar 

  21. M.M. Dubinin, Q. Rev. Chem. Soc. 9, 101 (1955).

    Article  CAS  Google Scholar 

  22. G. Horwarth and K. Kawazoe, J. Chem. Eng. Jpn. 16, 470 (1983).

    Article  Google Scholar 

  23. S. Brunauer, L.S. Deming, W.S. Deming, and E. Teller, J. Am. Chem. Soc. 62, 1723 (1940).

    Article  CAS  Google Scholar 

  24. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, and T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985).

    Article  CAS  Google Scholar 

  25. E.P. Barret, L.G. Joyner, and P.P. Halenda, J. Am. Chem. Soc. 73, 373 (1951).

    Article  Google Scholar 

  26. PDF-2 File, JCPDS International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PA, 1998.

  27. H.P. Klug and L.E. Alexander, X-ray Diffraction Procedures (Wiley, New York, 1974).

    Google Scholar 

  28. K. Nakamoto, Infrared Spectroscopy of Inorganic and Co-ordination Compounds (Wiley, New York, 1970).

    Google Scholar 

  29. D. Weigel, B. Imelik, and P. Lafitte, Bull. Soc. Chim. Fr. 345 (1962).

  30. O. Clause, M. Kermarec, L. Bonneviot, F. Villain, and M. Che, J. Am. Chem. Soc. 114, 4709 (1992).

    Article  CAS  Google Scholar 

  31. M. Prassas, J. Phalippou, and J. Zarzycki, J. Mater. Sci. 19, 1656 (1984).

    Article  CAS  Google Scholar 

  32. A.H. Boonstra and J.M.E. Baken, J. Non-Cryst. Solids 109, 1 (1989).

    Article  CAS  Google Scholar 

  33. G. Ennas (private communication).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Corrias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casula, M.F., Corrias, A. & Paschina, G. Nickel oxide–silica and nickel–silica aerogel and xerogel nanocomposite materials. Journal of Materials Research 15, 2187–2194 (2000). https://doi.org/10.1557/JMR.2000.0315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0315

Navigation