Skip to main content
Log in

Orientation dependence of Portevin–Le Châtelier plastic instabilities in depth-sensing microindentation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Plastic instabilities were investigated in an Al–Zn–Mg–Cu alloy by depth-sensing microhardness testing in Vickers geometry. The alloy investigated showed strong age hardening as a consequence of Guiner–Preston zone formation at room temperature. The orientation dependence of the Portevin–Le Chátelier (PLC) effect was investigated by microindentation tests in differently oriented grains. If the direction of the indentation was close to the 〈100〉 crystal axis and the diagonal of the Vickers indenter coincides with the 〈110〉 crystal direction, the PLC effect was more pronounced. Under these conditions the instabilities could be observed even after 5 h of natural aging, while the PLC effect disappeared in grains with other orientations after 2 h of aging. The orientation dependence of the indentation curves was observed up to the maximal measured imprint size (d ≈ 80 μm). It is suggested that the initialization of the PLC bands takes place in the close vicinity of indenter/sample contact surface. Considering only a uniaxial compressive stress component in the sample/indenter contact planes, in the vicinity of the indenter single sliplike and multiple sliplike conditions are attained depending on the orientation of the indenter relative to the sample. Changes of the slip conditions correlate with changes in the observation regime of instability which explains the orientation dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Penning, Acta Metall. 20, 1169 (1972).

    Article  Google Scholar 

  2. P. Hähner, Mater. Sci. Eng. A 207, 208 (1996).

    Article  Google Scholar 

  3. P. Hähner, Mater. Sci. Eng. A 207, 216 (1996).

    Article  Google Scholar 

  4. L.P. Kubin, K. Chihab, and Y. Estrin, Acta Metall. 36, 2707 (1988).

    Article  CAS  Google Scholar 

  5. G. Bérces, N.Q. Chinh, A. Juhász, and J. Lendvai, J. Mater. Res. 13, 1411 (1998).

    Article  Google Scholar 

  6. G. Bérces, N.Q. Chinh, A. Juhász, and J. Lendvai, Acta Mater. 46, 2029 (1998).

    Article  Google Scholar 

  7. D. Thevenet, M. Mliha-Touati, and A. Zeghloul, Mater. Sci. Eng. A 266, 175 (1999).

    Article  Google Scholar 

  8. G.M. Pharr, W.C. Oliver, and F.R. Brotzen, J. Mater. Res. 7, 613 (1992).

    Article  CAS  Google Scholar 

  9. N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson, Acta Metall. Mater. 42, 475 (1994).

    Article  CAS  Google Scholar 

  10. W.J. Poole, M.F. Ashby, and N.A. Fleck, Scr. Mater. 34, 559 (1996).

    Article  CAS  Google Scholar 

  11. E.C. Aifantis, J. Eng. Mater. Technol. 106, 326 (1984).

    Article  CAS  Google Scholar 

  12. A. Iost and R. Bigot, J. Mater. Sci. 31, 3573 (1996).

    Article  CAS  Google Scholar 

  13. N.A. Stelmashenko, M.G. Walls, L.M. Brown, and Yu.V. Milman, Acta Metall. Mater. 41, 2855 (1993).

    Article  CAS  Google Scholar 

  14. S.G. Corcoran, R.J. Colton, E.T. Lilleodden, and W.W. Gerberich, Phys. Rev. B 55, R16057 (1997).

  15. W.W. Gerberich, S.K. Venkataraman, H. Huang, S.E. Harvey, and D.L. Kohlstedt, Acta Metall. Mater. 43, 1569 (1995).

    Article  CAS  Google Scholar 

  16. C.F. Robertson and M.C. Fivel, J. Mater. Res. 14, 2251 (1999).

    Article  CAS  Google Scholar 

  17. W.L. Elban and R.W. Armstrong, Acta Mater. 46, 6041 (1998).

    Article  CAS  Google Scholar 

  18. N.Q. Chinh, Gy. Horváth, Zs. Kovács, and J. Lendvai, Mater. Sci. Eng. (2000, in press).

  19. Y. Bréchet and Y. Estrin, Scr. Metall. Mater. 31, 185 (1994).

    Article  Google Scholar 

  20. Y. Bréchet and Y. Estrin, Acta Metall. Mater. 43, 955 (1995).

    Article  Google Scholar 

  21. P. Lukáč, J. Balík, and F. Chmelík, Mater. Sci. Eng. A 234–236, 45 (1997).

    Article  Google Scholar 

  22. S.C. Chang and H.C. Chen, Acta Metall. Mater. 43, 2501 (1995).

    Article  CAS  Google Scholar 

  23. É. Tassy-Betz and J. Prohászka, Metallography 7, 91 (1974).

    Article  CAS  Google Scholar 

  24. G.M. Pharr, Mater. Sci. Eng. A 253, 151 (1998).

    Article  Google Scholar 

  25. A. Bolshakov, W.C. Oliver, and G.M. Pharr, J. Mater. Res. 11, 760 (1996).

    Article  CAS  Google Scholar 

  26. A.E. Giannakopoulos, P.L. Larsson, and R. Vestergaard, Int. J. Solids Struct. 31, 2679 (1994).

    Article  Google Scholar 

  27. M.S. Bobji and S.K. Biswas, Proceedings of the International Conference on Recent Advances in Metallurgical Processes, (New Age International Publishers, New Delhi, 1997), p. 1223.

  28. A. Kalk, A. Nortmann, and Ch. Schwink, Philos. Mag. A 72, 1239 (1995).

    Article  CAS  Google Scholar 

  29. P.G. McCormick, Acta Metall. 30, 2079 (1982).

    Article  CAS  Google Scholar 

  30. C.P. Ling, P.G. McCormick, and Y. Estrin, Acta Metall. Mater. 41, 3323 (1993).

    Article  CAS  Google Scholar 

  31. J.D. Kiely, K.F. Jarausch, J.E. Houston, and P.E. Russell, J. Mater. Res. 14, 2219 (1999).

    Article  CAS  Google Scholar 

  32. E.B. Tadmor, R. Miller, R. Phillips, and M. Ortiz, J. Mater. Res. 14, 2233 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovács, Z., Chinh, N.Q. & Lendvai, J. Orientation dependence of Portevin–Le Châtelier plastic instabilities in depth-sensing microindentation. Journal of Materials Research 16, 1171–1177 (2001). https://doi.org/10.1557/JMR.2001.0161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0161

Navigation