Skip to main content
Log in

Measurement of residual stress by load and depth sensing indentation with spherical indenters

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new experimental technique is presented for making measurements of biaxial residual stress using load and depth sensing indentation (nanoindentation). The technique is based on spherical indentation, which, in certain deformation regimes, can be much more sensitive to residual stress than indentation with sharp pyramidal indenters like the Berkovich. Two different methods of analysis were developed: one requiring an independent measure of the material’s yield strength and the other a reference specimen in the unstressed state or other known reference condition. Experiments conducted on aluminum alloys to which controlled biaxial bending stresses were applied showed that the methods are capable of measuring the residual stress to within 10–20% of the specimen yield stress. Because the methods do not require imaging of the hardness impressions, they are potentially useful for making localized measurements of residual stress, as in thin films or small volumes, or for characterization of point-to-point spatial variations of the surface stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kokubo, Science Reports of the Tohoku Imperial University 21, 256 (1932).

    Google Scholar 

  2. H. Kostron, Technisches Versuchsant Mitteilungen January, 17 (1932).

  3. H. Kostron, Metallwirtschaft 12, 473 (1933).

    Google Scholar 

  4. G. Sines and R. Carlson, ASTM Bulletin 180, 35 (1952).

    Google Scholar 

  5. P.A. Blain, Sheet Metal Ind. 26, 135 (1949).

    Google Scholar 

  6. P.A. Blain, Metal. Progress, 99 (1957).

  7. J.O. Alamen, Prod. Eng., 121 (1950).

  8. G.U. Oppel, Exp. Mech. 21, 135 (1964).

    Article  Google Scholar 

  9. T.R. Simes, S.G. Mellor, and D.A. Hills, J. Strain Anal. 19, 135 (1984).

    Article  Google Scholar 

  10. F.H. Vitovec, in Microindentation Techniques in Materials Science and Engineering, edited by P.J. Blau and B.R. Lawn (ASTM 889, Philadelphia, PA, 1986), p. 175.

  11. W.R. LaFontain, B. Yost, and C-Y. Li, J. Mater. Res. 5, 776 (1990).

    Article  Google Scholar 

  12. M.F. Doerner, D.S. Gardner, and W.D. Nix, J. Mater. Res. 1, 845 (1986).

    Article  CAS  Google Scholar 

  13. T.Y. Tsui, W.C. Oliver, and G.M. Pharr, J. Mater. Res. 11, 752 (1996).

    Article  CAS  Google Scholar 

  14. A. Bolshakov, W.C. Oliver, and G.M. Pharr, J. Mater. Res. 11, 760 (1996).

    Article  CAS  Google Scholar 

  15. A. Bolshakov and G.M. Pharr, J. Mater. Res. 13, 1049 (1998).

    Article  CAS  Google Scholar 

  16. S. Suresh and A.E. Giannakopoulos, Acta Mater. 46, 5755 (1998).

    Article  CAS  Google Scholar 

  17. B. Taljat and G.M. Pharr, in Thin Films: Stresses and Mechanical Properties VIII, edited by R. Vinci, O. Kraft, N. Moody, and E. Shaffer II (Mater. Res. Soc. Symp. Proc. 594, Warrendale, PA, 2000), p. 519.

  18. K.L. Johnson, J. Mech. Phys. Solids 18, 115 (1970).

    Article  Google Scholar 

  19. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, United Kingdom, 1985).

  20. H. Hertz, Miscellaneous Papers, edited by D.E. Jones and G.H. Schott (Macmillan, London, 1896), p. 163.

  21. D. Tabor, The Hardness of Metals (Clarendon Press, Oxford, United Kingdom, 1951).

  22. H.A. Francis, J. Eng. Mater. Technol. 98, 272 (1976).

    Article  Google Scholar 

  23. Y. Tirupataiah and G. Sundararajan, Metall. Trans. A 22A, 2375 (1991).

    Article  CAS  Google Scholar 

  24. The Aluminum Association, Aluminum Standards and Data (The Aluminum Association, New York, 1968), p. 28.

  25. J.G. Swadener and G.M. Pharr, in Thin Films: Stresses and Mechanical Properties VII, edited by R. Vinci, O. Kraft, N. Moody, and E. Shaffer VIII (Mater. Res. Soc. Symp. Proc. 594, Warrendale, PA, 2000), p. 525.

  26. J.G. Swadener and G.M. Pharr, Philos. Mag. A 81, 447 (2001).

    Article  CAS  Google Scholar 

  27. J.S. Field and M.V. Swain, J. Mater. Res. 8, 297 (1993).

    Article  CAS  Google Scholar 

  28. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  29. Z. Mroz (private communication, Chicago, IL, August 31, 2000).

  30. A.L. Norbury and T. Samuel, J. Iron Steel Inst. 117, 673 (1928).

    Google Scholar 

  31. B. Taljat, T. Zacharia, and G.M. Pharr in Fundamentals of Nanoindentation and Nanotribology, edited by N.R. Moody, W.W. Gerberich, N. Burnham, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 33.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swadener, J.G., Taljat, B. & Pharr, G. Measurement of residual stress by load and depth sensing indentation with spherical indenters. Journal of Materials Research 16, 2091–2102 (2001). https://doi.org/10.1557/JMR.2001.0286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0286

Navigation