Skip to main content
Log in

Coherent island formation of Cu2O films grown by chemical vapor deposition on MgO(110)

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Cuprous oxide (Cu2O) films have been grown on single-crystal MgO(110) substrates by a chemical vapor deposition process in the temperature range 690–790 °C. X-ray diffraction measurements show that phase-pure, highly oriented Cu2O films form at these temperatures. The Cu2O films are observed to grow by an island-formation mechanism on this substrate. Films grown at 690 °C uniformly coat the substrate except for micropores between grains. However, at a growth temperature of 790 °C, an isolated, three-dimensional island morphology develops. Using a transmission electron microscopy and atomic force microscope, both dome- and hut-shaped islands are observed and are shown to be coherent and epitaxial. The isolated, coherent islands form under high mobility growth conditions where geometric strain relaxation occurs before misfit dislocation can be introduced. This rare observation for oxides is attributed to the relatively weak bonding of Cu2O, which also has a relatively low melting temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Lin and J.P. Wolfe, Phys. Rev. Lett. 71, 1222 (1993).

    CAS  Google Scholar 

  2. D. Snoke, J.P. Wolfe, and A. Mysyrowicz, Phys. Rev. Lett. 59, 827 (1987).

    CAS  Google Scholar 

  3. D.W. Snoke, J.P. Wolfe, and A. Mysyrowicz, Phys. Rev. B 41, 11171 (1990).

    CAS  Google Scholar 

  4. D.W. Snoke, J.P. Wolfe, and A. Mysyrowicz, Phys. Rev. Lett. 64, 2543 (1990).

    CAS  Google Scholar 

  5. D.W. Snoke, J.L. Lin, and J.P. Wolfe, Phys. Rev. B 43, 1226 (1991).

    CAS  Google Scholar 

  6. G.K. White, J. Phys. C 11, 2171 (1978).

    CAS  Google Scholar 

  7. P.D. Bloch and C. Schwab, Phys. Rev. Lett. 41, 514 (1978).

    CAS  Google Scholar 

  8. S.B. Ogale, P.G. Bilurkar, N. Mate, S.M. Kanetkar, N. Parikh, and B. Patnaik, J. Appl. Phys. 72, 3765 (1992).

    CAS  Google Scholar 

  9. S.B. Ogale, P.G. Bilurkar, and N. Mate, J. Cryst. Growth 128, 714 (1993).

    CAS  Google Scholar 

  10. M.W. Bench, K.B. Sartain, J.R. Heffelfinger, and C.B. Carter, in Mechanisms of Thin-Film Evolution, edited by S.M. Yalisove, C.V. Thomson, and D.J. Eaglesham (Mater. Res. Soc. Symp. Proc. 317, Pittsburgh, PA, 1994), p. 491.

  11. G.G. Condorelli, G. Malandrino, and I.L. Fragala`, Chem. Vap. Deposition 5, 21 (1999).

    CAS  Google Scholar 

  12. M. Ottosson, J. Lu, and J-O. Carlsson, J. Cryst. Growth 151, 305 (1995).

    CAS  Google Scholar 

  13. A. Parretta, M.K. Jayaraj, A.D. Nocera, S. Loreti, L. Quercia, and A. Agati, Phys. Status Solidi A 155, 399 (1996).

    CAS  Google Scholar 

  14. D.J. Miller, J.D. Hettinger, R.P. Chiarello, and H.K. Kim, J. Mater. Res. 7, 2828 (1992).

    CAS  Google Scholar 

  15. K. Kawaguchi, R. Kita, M. Nishiyama, and T. Morishita, J. Cryst. Growth 143, 221 (1994).

    CAS  Google Scholar 

  16. R.C. Evans, An Introduction to Crystal Chemistry (C.B.L.S., Marietta, OH, 1964).

  17. W. Fan, P.R. Markworth, T.J. Marks, and R.P.H. Chang, Mater. Chem. Phys. 70, 191 (2001).

    CAS  Google Scholar 

  18. W.S. Brower and H.S. Parker, J. Cryst. Growth 8, 227 (1971).

    CAS  Google Scholar 

  19. J.F. Elliott, Metall. Trans. B 7B, 17 (1976).

    CAS  Google Scholar 

  20. R.D. Schmidt-Whitley, M. Martinez-Clemente, and A. Revcolevschi, J. Cryst. Growth 23, 113 (1974).

    CAS  Google Scholar 

  21. P.R. Markworth, R.P.H. Chang, Y. Sun, G.K. Wong, and J.B. Ketterson, J. Mater. Res. (in press).

  22. M. Ohring, The Materials Science of Thin Films (Academic Press, San Diego, CA, 1992).

  23. F.M. Ross, J. Tersoff, and R.M. Tromp, Phys. Rev. Lett. 80, 984 (1998).

    CAS  Google Scholar 

  24. C-P. Liu, J.M. Gibson, D.C. Cahill, T.I. Kamins, D.P. Basile, and R.S. Williams, Phys. Rev. Lett. 84, 1958 (2000).

    CAS  Google Scholar 

  25. R.S. Williams, G. Medeiros-Ribeiro, T.I. Kamins, and D.A.A. Ohlberg, J. Phys. Chem. B 102, 9605 (1998).

    CAS  Google Scholar 

  26. D.J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).

    CAS  Google Scholar 

  27. M. Hammar, F.K. LeGoues, J. Tersoff, M.C. Reuter, and R.M. Tromp, Surf. Sci. 349, 129 (1996).

    CAS  Google Scholar 

  28. M. Abdallah, I. Berberzier, P. Dawson, M. Serpentini, G. Bremond, and B. Joyce, Thin Solid Films 336, 256 (1998).

    CAS  Google Scholar 

  29. M. Goryll, L. Vascan, and H. Lüth, Thin Solid Films 336, 244 (1998).

    CAS  Google Scholar 

  30. G. Medeiros-Ribeiro, A.M. Bratkovski, T.I. Kamins, D.A.A. Ohlberg, and R.S. Williams, Science 279, 353 (1998).

    CAS  Google Scholar 

  31. P. Boucaud, V.L. Thanh, S. Sauvage, D. Debarre, D. Bouchier, and J-M. Lourtioz, Thin Solid Films 336, 240 (1998).

    CAS  Google Scholar 

  32. M. Goryll, L. Vescan, K. Schmidt, S. Mesters, and H. Lüth, Appl. Phys. Lett 71, 410 (1997).

    CAS  Google Scholar 

  33. G. Medeiros-Ribeiro, T.I. Kamins, D.A.A. Ohlberg, and R.S. Williams, Phys. Rev. B 58, 3533 (1998).

    CAS  Google Scholar 

  34. D.J. Eaglesham and R. Hull, Mater. Sci. Eng. B 30, 197 (1995).

    Google Scholar 

  35. M. Krishnamurthy, J.S. Drucker, and J.A. Venables, J. Appl. Phys. 69, 6461 (1991).

    CAS  Google Scholar 

  36. D.E. Jesson, K.M. Chen, S.J. Pennycook, T. Thundat, and R.J. Warmack, Phys. Rev. Lett. 77, 1330 (1996).

    CAS  Google Scholar 

  37. J.A. Floro, E. Chason, L.B. Freund, R.D. Twesten, R.Q. Hwang, and G.A. Lucadamo, Phys. Rev. B 59, 1990 (1999).

    CAS  Google Scholar 

  38. J.A. Floro, G.A. Lucadamo, E. Chason, L.B. Freund, M. Sinclair, R.D. Twesten, and R.Q. Hwang, Phys. Rev. Lett. 80, 4717 (1998).

    CAS  Google Scholar 

  39. J.A. Floro, E. Chason, R.D. Twesten, R.Q. Hwang, and L.B. Freund, Phys. Rev. Lett. 79, 3946 (1997).

    CAS  Google Scholar 

  40. J.A. Floro, E. Chason, S.R. Lee, R.D. Twesten, R.Q. Hwang, and L.B. Freund, J. Electron. Mater. 26, 969 (1997).

    CAS  Google Scholar 

  41. D.J. Eaglesham, E.P. Kvam, D.M. Maher, C.J. Humphreys, and J.C. Bean, Philos. Mag. A 59, 1059 (1989).

    CAS  Google Scholar 

  42. P. Sutter, E. Mateeva, J.S. Sullivan, and M.G. Lagally, Thin Solid Films 336, 262 (1998).

    CAS  Google Scholar 

  43. Y-W. Mo, D.E. Savage, B.S. Swartzentruber, and M.G. Lagally, Phys. Rev. Lett. 65, 1020 (1990).

    CAS  Google Scholar 

  44. A.J. Steinfort, P.M.O. Scholte, A. Ettema, F. Tuinstra, M. Nielsen, E. Landemark, D-M. Smilgies, R. Feidenhans’l, G. Falkenberg, L. Seehofer, and R.L. Johnson, Phys. Rev. Lett. 77, 2009 (1996).

    CAS  Google Scholar 

  45. B.J. Spencer, P.W. Voorhees, and S.H. Davis, J. Appl. Phys. 73, 4955 (1993).

    CAS  Google Scholar 

  46. J. Tersoff and F.K. LeGoues, Phys. Rev. Lett. 72, 3570 (1994).

    CAS  Google Scholar 

  47. D.R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1999).

  48. L.B. Freund, Int. J. Solids Struct. 32, 911 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markworth, P.R., Liu, X., Dai, J.Y. et al. Coherent island formation of Cu2O films grown by chemical vapor deposition on MgO(110). Journal of Materials Research 16, 2408–2414 (2001). https://doi.org/10.1557/JMR.2001.0330

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0330

Navigation