Skip to main content
Log in

Numerical study on the measurement of thin film mechanical properties by means of nanoindentation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoindentation is a technique commonly used for measuring thin film mechanical properties such as hardness and stiffness. In this study, we used the finite element method to investigate the effect of substrate and pileup on hardness and stiffness measurements of thin film systems. We define a substrate effect factor and construct a map that may be useful in the interpretation of indentation measurements when it is not possible to make indentations shallow enough to avoid the influence of the substrate on the measurements. A new technique for measuring mechanical properties of thin films by nanoindentation is suggested at the end of this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  Google Scholar 

  2. T.Y. Tsui, J.J. Vlassak, and W.D. Nix, J. Mater. Res. 14, 2196 (1999).

    Article  CAS  Google Scholar 

  3. T.Y. Tsui, J.J. Vlassak, and W.D. Nix, J. Mater. Res. 14, 2204 (1999).

    Article  CAS  Google Scholar 

  4. Standard Test Method for Vickers Hardness of Metallic Materials (American Society for Testing and Materials, West Con-shohocken, PA, 1987).

    Article  CAS  Google Scholar 

  5. J.J. Vlassak and W.D. Nix, Philos. Mag. A 67, 1045 (1993).

  6. J.J. Vlassak and W.D. Nix, J. Mech. Phys. Solids 42, 1223 (1994).

    Article  Google Scholar 

  7. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985).

    Article  Google Scholar 

  8. R.B. King, Int. J. Solids Struct. 23, 1657 (1987).

    Book  Google Scholar 

  9. H.Y. Yu, S.C. Sanday, and B.B. Rath, J. Mech. Phys. Solids 38, 745 (1990).

    Article  Google Scholar 

  10. H. Gao, C-H. Chiu, and J. Lee, Int. J. Solids Struct. 29, 2471 (1992).

    Article  Google Scholar 

  11. T.A. Larsen and J.C. Simo, J. Mater. Res. 7, 618 (1992).

    Article  Google Scholar 

  12. T.Y. Tsui, W.C. Oliver, and G.M. Pharr, in Thin Films: Stresses and Mechanical Properties VI, edited by W.W. Gerberich, H. Gao, J-E. Sundgren, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1996), p. 207.

    Article  Google Scholar 

  13. T.Y. Tsui, C.A. Ross, and G.M. Pharr, in Materials Reliability in Microelectronics VII, edited by J.J. Clement, R.R. Keller, K.S. Krisch, J.E. Sanchez Jr., and Z. Suo (Mater. Res. Soc. Symp. Proc. 473, Pittsburgh, PA, 1997), p. 51.

    Google Scholar 

  14. J.C. Hay and G.M. Pharr, in Thin Films: Stresses and Mechanical Properties VII, edited by R.C. Cammarato, M.A. Nastasi, E.P. Busso, and W.C. Oliver (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998), p. 71.

    Google Scholar 

  15. A.K. Bhattacharya and W.D. Nix, Int. J. Solids Structures 24, 1287 (1988).

    Google Scholar 

  16. M.R. McGurk, H.W. Chandler, P.C. Twigg, and T.F. Page, Surf. Coat. Technol. 68, 576 (1994).

    Article  Google Scholar 

  17. M.R. McGurk and T.F. Page, Surf. Coat. Technol. 92, 87 (1997).

    Article  Google Scholar 

  18. A.M. Korsunsky, M.R. McGurk, S.J. Bull, and T.F. Page, Surf. Coat. Technol. 99, 171 (1998).

    Article  CAS  Google Scholar 

  19. S.D. Mesarovic and N.A. Fleck, Proc. R. Soc. Lond. 455, 2707 (1999).

    Article  CAS  Google Scholar 

  20. Hibbit, Karlsson and Sorenson Inc., ABAQUS Version 5.8 User’s Manual (Pawtucket, RI, 1999).

    Article  Google Scholar 

  21. K.W. McElhaney, J.J. Vlassak, and W.D. Nix, J. Mater. Res. 13, 1300 (1998).

  22. J.W. Harding and I.N. Sneddon, Proc. Cambridge Philos. Soc. 14, 16 (1945).

    Article  CAS  Google Scholar 

  23. J.C. Hay, A. Bolshakov, and G.M. Pharr, J. Mater. Res. 14, 2296 (1999).

    Article  Google Scholar 

  24. R. Bhadra, M. Grimsditch, I.K. Schuller, and F. Nizzoli, Phys. Rev. B39, 12456 (1989).

    Article  CAS  Google Scholar 

  25. M.G. Beghi, C.E. Bottani, P.M. Ossi, T.A. Lafford, and B.K. Tanner, J. Appl. Phys. 81, 672 (1997).

    Article  Google Scholar 

  26. A.J. Kalkman, A.H. Verbruggen, G.C.A.M. Janssen, and F.H. Groen, Rev. Sci. Instrum. 70, 4026 (1999).

    Article  CAS  Google Scholar 

  27. A.J. Kalkman, A.H. Verbruggen, and G.C.A.M. Janssen, Appl. Phys. Lett. 78, 2673 (2001).

    Article  CAS  Google Scholar 

  28. T. Kawai, B.M. Ma, S.G. Sankar, and W.E. Wallace, J. Appl. Phys. 67, 4610 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost J. Vlassak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Vlassak, J.J. Numerical study on the measurement of thin film mechanical properties by means of nanoindentation. Journal of Materials Research 16, 2974–2982 (2001). https://doi.org/10.1557/JMR.2001.0408

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0408

Navigation