Skip to main content
Log in

Derivation of plastic stress–strain relationship from ball indentations: Examination of strain definition and pileup effect

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The ball indentation technique has the potential to be an excellent substitute for a standard tensile test, especially in the case of small specimens or property-gradient materials such as welds. In our study, the true stress–true strain relationships of steels with different work-hardening exponents (0.1–0.3) were derived from ball indentations. Four kinds of strain definitions in indentation were attempted: 0.2sinγ, 0.4hc/a, ln[2/(1 + cosγ)], and 0.1tanγ. Here, γ is the contact angle between the indenter and the specimen, hc is the contact depth, and a is the contact radius. Through comparison with the standard data measured by uniaxial tensile testing, the best strain definition was determined to be 0.1tanγ. This new definition of strain, in which tanγ means the shear strain at contact edge, reflected effectively the work-hardening characteristics. In addition, the effects of pileup or sink-in were considered in determining the real contact between the indenter and the specimen from the indentation load–depth curve. The work-hardening exponent was found to be a main factor affecting the pileup/sink-in phenomena of various steels. These phenomena influenced markedly the absolute values of strain and stress in indentation by making the simple traditional relationship PmR ≈ ≈ 3 valid for the fully plastic regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Menčík and M.V. Swain, Mater. Forum 18, 277 (1994).

    Google Scholar 

  2. D. Tabor, The Hardness of Metals (Clarendon Press, Oxford, United Kingdom, 1951).

    Google Scholar 

  3. D.M. Marsh, Proc. R. Soc. London, Ser. A 279, 420 (1964).

    Google Scholar 

  4. C-H. Mok, Exp. Mech. Feb, 87 (1966).

    Article  Google Scholar 

  5. R.A. George, S. Dinda, and A.S. Kasper, Met. Progress May, 30 (1976).

    Google Scholar 

  6. D. Kramer, H. Huang, M. Kriese, J. Robach, J. Nelson, A. Wright, D. Bahr, and W.W. Gerberich, Acta Mater. 47, 333 (1999).

    Google Scholar 

  7. J.H. Underwood, G.P. O’Hara, and J.J. Zalinka, Exp. Mech. Dec, 379 (1986).

    Article  CAS  Google Scholar 

  8. H.A. Francis, Trans. ASME (Series H) 9, 272 (1976).

    Google Scholar 

  9. F.M. Haggag, in Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal Annealing and Plant Life Extension, edited by W.R. Corwin, F.M. Haggag, and W.L. Server (American Society for Testing and Materials, Philadelphia, PA, 1993), pp. 27–44.

    Google Scholar 

  10. J.S. Field and M.V. Swain, J. Mater. Res. 10, 101 (1995).

    Book  Google Scholar 

  11. A.C. Fischer-Cripps and B.R. Lawn, Acta Mater. 44, 519 (1996).

    Article  CAS  Google Scholar 

  12. J. Alcalaá, A.E. Giannakopoulos, and S. Suresh, J. Mater. Res. 13, 1390 (1998).

    Article  CAS  Google Scholar 

  13. B. Taljat, T. Zacharia, and F. Kosel, Int. J. Solids Structures 35, 4411 (1998).

    Article  Google Scholar 

  14. M.F. Doerner and W.D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  15. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  Google Scholar 

  16. I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).

    Article  CAS  Google Scholar 

  17. J.R. Mattews, Acta Metall. 28, 311 (1980).

    Article  Google Scholar 

  18. R. Hill, F.R.S., B. Storåkers, and A.B. Zdunek, Proc. R. Soc. London, Ser. A 423, 301 (1989).

    Article  Google Scholar 

  19. K.L. Johnson, J. Mech. Phys. Solids 18, 115 (1970).

    Article  CAS  Google Scholar 

  20. Yu.V. Milman, B.A. Galanov, and S.I. Chugunova, Acta Metall. Mater. 41, 2523 (1993).

    Article  Google Scholar 

  21. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, United Kingdom, 1985).

    Article  CAS  Google Scholar 

  22. E. Meyer, Z. ver . Deutshe Ing. 52, 645 (1908).

    Book  Google Scholar 

  23. W.W. Gerberich, S.K. Venkataraman, H. Huang, S.E. Harvey, and D.L. Kohlstedt, Acta Metall. Mater. 43, 1569 (1995).

    CAS  Google Scholar 

  24. A.B. Mann and J.B. Pethica, in Thin Films: Stresses and Mechani-cal Properties VI, edited by W.W. Gerberich, H. Gao, J-E. Sundgren, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 153.

    Article  CAS  Google Scholar 

  25. M. Hisaka, H. Ishitobi, and S. Kawata, J. Opt. Soc. Am. B 17, 1422 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, JH., Kwon, D. Derivation of plastic stress–strain relationship from ball indentations: Examination of strain definition and pileup effect. Journal of Materials Research 16, 3170–3178 (2001). https://doi.org/10.1557/JMR.2001.0437

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0437

Navigation