Skip to main content
Log in

Embedded-atom-method functions for the body-centered-cubic iron and hydrogen

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new reliable embedded atom method potential for hydrogen in body-centered-cubic (bcc) iron is developed by fitting not only to the properties of hydrogen in a perfect bcc iron lattice but also to the properties of hydrogen binding to vacancies. The validity of the potential is examined by calculating the properties of hydrogen trap binding to surfaces and dislocations that are in good accordance with the experiments. A brief application of the potential by molecular dynamic simulation reveals that hydrogen accumulated ahead of the crack tip induces serious hydrogen embrittlement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Daw and M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

    Article  CAS  Google Scholar 

  2. M.S. Daw and M.I. Baskes, Phys. Rev. Lett. B 29, 6443 (1984).

    Article  CAS  Google Scholar 

  3. J.K. Nørskov, Phys. Rev. B 26, 2875 (1982).

    Article  CAS  Google Scholar 

  4. J.K. Nørskov and F. Besenbacher, J. Less-Common Met. 130, 475 (1987).

    Article  Google Scholar 

  5. M.S. Daw, S.M. Foils, and M.I. Baskes, Mater. Sci. Rep. 9, 251 (1993).

    Article  Google Scholar 

  6. M. Ruda, D. Farkas, and J. Abriata, Phys. Rev. B 54, 9765 (1996).

    Article  CAS  Google Scholar 

  7. S.M. Myers, P. Nordlander, F. Besenbacher, and J.K. Nørskov, Phys. Rev. B 33, 854 (1986).

    Article  CAS  Google Scholar 

  8. S.M. Myers, W.R. Wampler, F. Besenbacher, S.L. Robinson, and N.R. Moody, Mater. Sci. Eng. 69, 397 (1985).

    Article  CAS  Google Scholar 

  9. F. Besenbacher, S.M. Myers, and J.K. Nørskov, Nucl. Instrum. Methods B 7/8, 55 (1985).

    Article  CAS  Google Scholar 

  10. J.E. Angelo, N.R. Moody, and M.I. Baskes, Modell. Simul. Mater. Sci. Eng. 3, 289 (1995).

    Article  Google Scholar 

  11. G.J. Thomas, in Hydrogen Effects in Metals, edited by I.M. Bernstein and A.W. Thompson (Metallurgical Society of AIME, New York, 1980), p. 77.

    Article  CAS  Google Scholar 

  12. S.M. Myers, P.M. Richards, and W.R. Wampler, J. Nucl . Mater. 165, 9 (1989).

    Google Scholar 

  13. R.A. Johnson and D.J. Oh, J. Mater. Res. 4(5), 1195 (1989).

    CAS  Google Scholar 

  14. M.I. Haftel, T.D. Andreadis, J.V. Lill, and J.M. Eridon, Phys. Rev. B 42, 11540 (1990).

    Article  CAS  Google Scholar 

  15. F. Besenbacher, S.M. Myers, P. Norlander, and J.K. Nøvskov, J. Appl. Phys. 61, 1788 (1987).

    Article  CAS  Google Scholar 

  16. M.I. Baskes, X. Sha, J.E. Angelo, and N.R. Moody, Modell. Simul. Mater. Sci. Eng. 5, 651 (1997).

    Article  CAS  Google Scholar 

  17. H. Wipf, in Hydrogen in Metals III: Topics in Applied Physics, Vol. 73, edited by H. Wipf (Springer-Verlag, Berlin, Heidelberg, Germany, 1997), p. 51.

    Article  Google Scholar 

  18. J.P. Hirth, Metall. Trans. 11A, 861 (1980).

    Book  Google Scholar 

  19. S.M. Myers, S.T. Picraux, and R.E. Stoltz, J. Appl. Phys. 50, 5710 (1979).

    Article  CAS  Google Scholar 

  20. S.T. Picraux, Nucl. Instrum. Methods 182–183, 413 (1981).

    Article  CAS  Google Scholar 

  21. J. Krüger, H.D. Kunze, and E. Schürmann, in Gas and Carbon in Metals, edited by E. Fromm and E. Gebhardt (Springer, Berlin, Germany, 1976), p. 578.

    Article  Google Scholar 

  22. G. Blyholder, J. Head, and F. Ruette, Surf. Sci. 131, 403 (1983).

    Google Scholar 

  23. K. Ono and M. Meshi, Acta Metall. Mater. 40, 1357 (1992).

    Article  CAS  Google Scholar 

  24. Z. Hu, S. Fukuyama, K. Yokogawa, and S. Okamoto, Modell. Simul. Mater. Sci. Eng. 7, 541 (1999).

    Article  CAS  Google Scholar 

  25. X. Xu, M. Wen, Z. Hu, S. Fukuyama, and K. Yokogawa, Comput. Mater. Sci. (in press).

    Article  CAS  Google Scholar 

  26. S. Hinotani, Y. Ohmori, and F. Terasaki, Mater. Sci. Tech. 10, 141 (1994).

  27. A.R. Troiano, Trans. ASM 52, 54 (1960).

    Article  CAS  Google Scholar 

  28. H. Vehoff, in Hydrogen in Metals III: Topics in Applied Physics, Vol. 73, edited by H. Wipf (Springer-Verlag, Berlin, Heidelberg, Germany, 1997), p. 215.

    Google Scholar 

  29. M.S. Daw, M.I. Baskes, C.L. Bisson, and W.G. Wolfer, in Mod-eling Environmental Effects on Crack Growth Processes, edited by R.H. Jones and W.W. Gerberich (Metallurgical Society of AIME, New York, 1986), p. 99.

    Book  Google Scholar 

  30. W.R. Moser, B.J. Marshik, J. Kingsley, M. Lemberger, A. Chan, J.E. Sunstrom IV, and A. Boye, J. Mater. Res. 10, 2322 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Yokogawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, M., Xu, XJ., Fukuyama, S. et al. Embedded-atom-method functions for the body-centered-cubic iron and hydrogen. Journal of Materials Research 16, 3496–3502 (2001). https://doi.org/10.1557/JMR.2001.0480

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0480

Navigation