Skip to main content
Log in

Depth-sensing indentation at macroscopic dimensions

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A macroscopic-scale depth-sensing indentation apparatus with the ability to be mounted on an inverted microscope for in situ observation of contact events was calibrated using the Oliver and Pharr [J. Mater. Res. 7, 1564 (1992)] procedure with a two-parameter area function. The calibrated Vickers tip was used to determine the projected contact area at peak load and the modulus and hardness of a variety of non-metallic materials through deconvolution of the measured load-displacement traces. The predicted contact area was found to be identical to the measured area of residual contact impressions. Furthermore, for transparent ceramic materials the projected contact area during loading was found to be the same as the area measured from the diagonal of post-indentation residual contact impressions. The modulus and hardness values deconvoluted from the load–displacement traces were compared with independent measurements. The effects of sample clamping, column compliance, and tip radius on the load–displacement data and inferred materials properties were also examined. It is suggested that the simplicity of instrumentation and operation, combined with the ability to observe indentations optically, even in situ, makes macroscopic-scale depth-sensing indentation ideal for fundamental studies of contact mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Pethica, R. Hutchings, and W.C. Oliver, Philos. Mag. A 48, 593 (1983).

    Article  CAS  Google Scholar 

  2. R.F. Cook and G.M. Pharr, J. Hard Mater. 5, 179 (1994).

    CAS  Google Scholar 

  3. B.J. Briscoe, K.S. Sebastian, and S.K. Sinha, Philos. Mag. A 74, 1159 (1996).

    Article  CAS  Google Scholar 

  4. J. Menčik, D. Munz, E. Quandt, E.R. Weppelmann, and M.V. Swain, J. Mater. Res. 12, 2475 (1997).

    Article  Google Scholar 

  5. T.F. Page, W.C. Oliver, and C.J. McHargue, J. Mater. Res. 7, 450 (1992).

    Article  CAS  Google Scholar 

  6. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  7. I.N. Sneddon, Int. J. Engng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  8. J. Thurn and R.F. Cook, J. Mater. Res. 17, 1143 (2002).

    Article  CAS  Google Scholar 

  9. F. Fröhlich, P. Grau, and W. Grellmann, Phys. Status Solidi (a) 42, 79 (1977).

    Article  Google Scholar 

  10. J.L. Loubet, J.M. Georges, D. Marchesini, and G. Meille, J. Tribol. 106, 43 (1984).

    Article  CAS  Google Scholar 

  11. J.E. Ritter, T.J. Lardner, L. Rosenfeld, and M.R.Lin, J. Appl. Phys. 66, 3626 (1989).

    Article  CAS  Google Scholar 

  12. G.M. Pharr and R.F. Cook, J. Mater. Res. 5, 847 (1990).

    Article  Google Scholar 

  13. R.F. Cook and G.M. Pharr, J. Am. Ceram. Soc. 73, 787 (1990).

    Article  CAS  Google Scholar 

  14. W. Mason, P.F. Johnson, and J.R. Varner, J. Mater. Res. 7, 3112 (1992).

    Article  CAS  Google Scholar 

  15. M. Sakai, Acta Metall. Mater. 41, 1751 (1993).

    Article  CAS  Google Scholar 

  16. B.J. Briscoe and K.S. Sebastian, Proc. R. Soc. Lond. A 452, 439 (1996).

    Article  CAS  Google Scholar 

  17. J. Gubicza, A. Juhász, P. Tasnádi, P. Arató, and G. Vörös, J. Mater. Sci. 31, 3109 (1996).

    Article  CAS  Google Scholar 

  18. S. Suresh, J. Alcalá, and A.E. Giannakopoulos, MIT Case No. 7280, Technology Licensing Office, Massachusetts Institute of Technology, Cambridge, MA, U.S. Patent filed 1996.

    Google Scholar 

  19. J. Alcalá, A.E. Giannakopoulos, and S. Suresh, J. Mater. Res. 13, 1390 (1998).

    Article  Google Scholar 

  20. H. Öberg, P-L. Larsson, and O. Magnius, J. Test. Eval. 29, 50 (2001).

    Article  Google Scholar 

  21. B.R. Lawn, A.G. Evans, and D.B. Marshall, J. Am. Ceram. Soc. 63, 574 (1980).

    Article  CAS  Google Scholar 

  22. D.B. Marshall and A.G. Evans, J. Appl. Phys. 56, 2632 (1984).

    Article  CAS  Google Scholar 

  23. B.R. Lawn and V.R. Howes, J. Mater. Sci. 16, 2745 (1981).

    Article  CAS  Google Scholar 

  24. D.B. Marshall, T. Noma, and A.G. Evans, J. Am. Ceram. Soc. 65, C175 (1982).

    Article  CAS  Google Scholar 

  25. R.F. Cook, J. Am. Ceram. Soc. 77, 1263 (1994).

    Article  Google Scholar 

  26. A.E.H. Love, Quarterly Journal of Mathematics 10, (1939).

  27. G.G. Bilodeau, J. Appl. Mech. 59, 519 (1992).

    Article  Google Scholar 

  28. D. Tabor, The Hardness of Metals (Clarendon Press, Oxford, U.K., 1951), pp. 8–11, 112–113.

    Google Scholar 

  29. G.M. Pharr, W.C. Oliver, and F.R. Brotzen, J. Mater. Res. 7, 613 (1992).

    Article  CAS  Google Scholar 

  30. C-M. Cheng and Y-T. Cheng, Appl. Phys. Lett. 71, 2326 (1997).

    Google Scholar 

  31. N.A. Stilwell and D. Tabor, Phys. Proc. Soc. Lond. 78, 169 (1961).

    Article  Google Scholar 

  32. M.F. Doerner and W.D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  33. C.W. Shih, M. Yang, and J.C.M. Li, J. Mater. Res. 6, 2623 (1991).

    Article  CAS  Google Scholar 

  34. H. Pelletier, J. Krier, A. Cornet, and P. Mille, Thin Solid Films 379, 147 (2000).

    Article  CAS  Google Scholar 

  35. S. Enders, P. Grau, and H.M. Hawthorne, in Fundamentals of nanoindentation and Nanotribology II, edited by S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), p. Q3.6.1.

  36. J.M. Antunes, A. Cavaleiro, L.F. Menezes, M.I. Simões, and J.V. Fernandes, Surf. Coat. Technol. 149, 27 (2002).

    Article  CAS  Google Scholar 

  37. L.E. Seitzman, J. Mater. Res. 13, 2936 (1998).

    Article  CAS  Google Scholar 

  38. K. Herrmann, N.M. Jennett, W. Wegener, J. Meneve, K. Hasche, and R. Seemann, Thin Solid Films 377–378, 394 (2000).

    Article  Google Scholar 

  39. Y-T. Cheng and C-M. Cheng, Appl. Phys. Lett. 73, 614 (1998).

    Article  CAS  Google Scholar 

  40. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981).

    Article  CAS  Google Scholar 

  41. J.B. Wachtman, Jr., W.E. Tefft, D.G. Lam, Jr., and R.P. Stinchfield, J. Res. Natl. Bur. Stand. Sect. A: Phys. Chem. 64, 213 (1960).

    Article  Google Scholar 

  42. W.A. Brantley, J. Appl. Phys. 44, 534 (1973).

    Article  CAS  Google Scholar 

  43. Product Bulletin, Minnesota Mining and Manufacturing Company (St. Paul, MN, 1987).

  44. A. Goldstein and A. Singurindi, J. Am. Ceram. Soc. 83, 1530 (2000).

    Article  CAS  Google Scholar 

  45. D. Berlincourt and H. Jaffe, Phys. Rev. 111, 143 (1958).

    Article  CAS  Google Scholar 

  46. R.F. Cook, Ph.D. Thesis, School of Physics, University of New South Wales, Sydney, Australia (1985).

  47. R.P. Ingel and D. Lewis, J. Am. Ceram. Soc. 71, 265 (1988).

    Article  CAS  Google Scholar 

  48. R.F. Cook, E.G. Liniger, and M.R. Pascucci, J. Hard Mater. 5, 191 (1994).

    CAS  Google Scholar 

  49. S.M. Wiederhorn, J. Am. Ceram. Soc. 562, 99 (1969).

    Article  Google Scholar 

  50. M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials (Prentice-Hall, Upper Saddle River, NJ, 1999), p. 92.

    Google Scholar 

  51. C.A. Brookes, J.B. O’Neill, and B.A. Redfern, Proc. Roy. Soc. London Ser. A 322, 73 (1971).

    CAS  Google Scholar 

  52. R.B. King, Int. J. Solids Structures 23, 1657 (1987).

    Article  Google Scholar 

  53. J.C. Hay, A. Bolshakov, and G.M. Pharr, J. Mater. Res. 14, 2296 (1999).

    Article  CAS  Google Scholar 

  54. V. Marx and H. Balke, Acta Mater. 45, 3791 (1997).

    Article  CAS  Google Scholar 

  55. A. Shimamoto, K. Tanaka, Y. Akliyama, and H. Yoshizaki, Philos. Mag. A 74, 1097 (1996).

    Article  CAS  Google Scholar 

  56. K. Zeng and C-H. Chiu, Acta Mater. 49, 3539 (2001).

    Article  CAS  Google Scholar 

  57. Y. Sun, T. Bell, and S. Zheng, Thin Solid Films 258, 198 (1995).

    Article  CAS  Google Scholar 

  58. Y. Sun, S. Zheng, T. Bell, and J. Smith, Philos. Mag. Lett. 79, 649 (1999).

    Article  CAS  Google Scholar 

  59. Y-T. Cheng and C-M. Cheng, J. Mater. Res. 13, 1059 (1998).

    Article  CAS  Google Scholar 

  60. J. Malzbender and G. de With, J. Mater. Res. 17, 502 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thurn, J., Morris, D.J. & Cook, R.F. Depth-sensing indentation at macroscopic dimensions. Journal of Materials Research 17, 2679–2690 (2002). https://doi.org/10.1557/JMR.2002.0388

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0388

Navigation