Skip to main content
Log in

Determination of reactive wetting properties of Sn, Sn–Cu, Sn–Ag, and Sn–Pb alloys using a wetting balance technique

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Wetting properties of lead-free solders, Sn–0.7 wt.% Cu and Sn–3.5 wt.% Ag, pure Sn, and conventional Sn–40 w.t% Pb on Ni, Cu, and Ag substrates at 250 and 240 °C were determined by using a wetting balance technique. Wetting times and wetting forces were determined directly from the wetting curves, and surface tensions of molten solders were calculated from the wetting force measurements. A statistic tool, analysis of variance (ANOVA), was used to analyze the experimental results. By using the wetting time as an indication, it was found that Sn–Pb exhibited the best wetting followed by Sn–Ag, Sn–Cu, and Sn, in that order. A very significant but frequently ignored issue is that most solders react with substrates, and the molten solders are not in contact with the original substrates but rather with intermetallic compounds. On the basis of theoretical analysis and experimental observations, it was concluded that the withdrawing forces and the surface tensions of the molten solders determined by the present technique are not significantly affected by the interfacial reactions if the interfacial reactions are not too excessive. However, wetting times are strong functions of both solders and substrates and the interfacial reactions between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Jin, JOM 45(7), 13 (1993).

    Article  CAS  Google Scholar 

  2. P.T. Vianco and D.R. Frear, JOM 45(7), 14 (1993).

    Article  CAS  Google Scholar 

  3. J.W. Morris, Jr., J.L. Goldstein, and Z. Mei, JOM 45(7), 25 (1993).

    Article  CAS  Google Scholar 

  4. C. Melton, JOM 45(7), 33 (1993).

    Article  CAS  Google Scholar 

  5. M. McCormack and S. Jin, JOM 45(7), 36 (1993).

    Article  CAS  Google Scholar 

  6. J. Glazer, Int. Mater. Rev. 40, 63 (1995).

    Article  Google Scholar 

  7. J.C. Berg, Wettability (Marcel Dekker, New York, 1993), Chap. 2.

    Book  Google Scholar 

  8. F.G. Yost, E.J. O’Toole, P.A. Sackinger, and T.P. Swiler, Sandia Report (Sandia National Laboratories, Albuquerque, NM, 1998), pp. 1–7.

  9. F.G. Yost, The Metal Science of Joining, edited by M.J. Cieslak, J.H. Perepezko, S. Kang, and M.E. Glicksman (TMS, Warrendale, PA, 1992) pp. 49–59.

    Google Scholar 

  10. W.J. Boettinger, C.A. Handwerker, and L.C. Smith, The Metal Science of Joining edited by M.J. Cieslak, J.H. Perepezko, S. Kang, and M.E. Glicksman (TMS, Warrendale, PA, 1992), pp. 183–189.

    Google Scholar 

  11. F.G. Yost and A.D. Romig, Jr. in Electronic Packaging Materials Science II, edited by R.C. Sundahl, R. Jaccodine, and K.A. Jackson (Mater. Res. Soc. Symp. Proc. 108, Pittsburgh, PA, 1988), pp. 385–390.

  12. I.A. Aksay, C.E. Hoge, and J.A. Pask, J. Phys. Chem. 78, 1178 (1974).

    Article  CAS  Google Scholar 

  13. W.J. Boettinger, C.A. Handwerker, and U.R. Kattner, in The Mechanics of Solder Alloy Wetting and Spreading, edited by F.G. Yost, F.M. Hosking, and D.R. Frear (Van Nostrand Reinhold, New York, 1993), pp. 103–140.

    Chapter  Google Scholar 

  14. K. Landry, C. Rado, R. Voitovich, and N. Eustathopoulos, Acta Mater. 45, 3079 (1997).

    Article  CAS  Google Scholar 

  15. P.T. Vianco, F.M. Hosking, and J.A. Rejent, in Proceedings of the Conference Nepcon West (1992), pp. 1730–1738.

  16. S. Green, D. Lea, and C. Hunt, NPL Report CMMT(A)213 (NPL, Teddington, Middlesex, U.K., 1999), pp. 1–10.

    Google Scholar 

  17. J-I. Lee, S-W. Chen, H-Y. Chang, and C-M. Chen, J. Electron. Mater. 32, 117 (2003).

    Article  CAS  Google Scholar 

  18. J.Y. Park, J.S. Ha, C.S. Kang, K.S. Shin, M.I. Kim, and J.P. Jung, J. Electron. Mater. 29, 1145 (2000).

    Article  CAS  Google Scholar 

  19. J.Y. Park, C.S. Kang, and J.P. Jung, J. Electron. Mater. 28, 1256 (1999).

    Article  CAS  Google Scholar 

  20. M. Abtew and G. Selvaduray, Mater. Sci. Eng. 27, 95 (2000).

    Article  Google Scholar 

  21. I. Artaki, A.M. Jackson, and P.T. Vianco, J. Electron. Mater. 23, 757 (1994).

    Article  CAS  Google Scholar 

  22. P.T. Vianco and P.M. Mizik, International SAMPE Electronics Conference (1994), Vol. 7, pp. 366–380.

    CAS  Google Scholar 

  23. A.M. Jackson, I. Artaki, and P.T. Vianco, International SAMPE Electronics Conference (1994), Vol. 7, pp. 381–393.

    CAS  Google Scholar 

  24. T. Takemoto and M. Miyazaki, Mater. Trans. 42, 745 (2001).

    Article  CAS  Google Scholar 

  25. M.K. Choi, C.Y. Lee, and C.J. Shur, J. Electron. Manuf. 8, 235 (1998).

    Article  Google Scholar 

  26. D.C. Montgomery, Design and Analysis of Experiments (Wiley, New York, 1997).

    Google Scholar 

  27. S-W. Chen and Y-W. Yen, J. Electron. Mater. 30, 1133 (2001).

    Article  CAS  Google Scholar 

  28. C-Y. Huang and S-W. Chen, J. Electron. Mater. 31, 152 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinn-wen Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Hy., Chen, Sw., Wong, D.Sh. et al. Determination of reactive wetting properties of Sn, Sn–Cu, Sn–Ag, and Sn–Pb alloys using a wetting balance technique. Journal of Materials Research 18, 1420–1428 (2003). https://doi.org/10.1557/JMR.2003.0195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0195

Navigation