Skip to main content
Log in

Incongruent reduction of tungsten carbide by a zirconium-copper melt

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The reduction of tungsten carbide (WC) to elemental tungsten by reaction with a Zr–Cu melt was examined. Dense WC disks were immersed in a vertical orientation in molten Zr2Cu at 1150–1400 °C for 1.5–24 h. Continuous, adherent layers of W and ZrC formed at WC/melt interfaces. The rates of thickening of the W and ZrC product layers were examined as a function of reaction time and temperature and position along the vertical WC surface. Such kinetic data, along with microstructural analyses, indicate that the incongruent reduction of tungsten carbide is likely to be controlled by carbon diffusion through one or both of the product layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.K. Storms, The Refractory Carbides (Academic Press, New York, 1967), pp. 18–35.

    Google Scholar 

  2. W.S. Williams, in Progress in Solid State Chemistry, edited by H. Reiss and J.O. McCaldin (Pergamon Press, New York, 1971), Vol. 6, pp. 57-118.

  3. Phase Equilibria Diagrams, Vol. X. Borides, Carbides, and Nitrides, edited by A.E. McHale (The American Ceramic Society, Westerville, OH, 1994), pp. 251–252, 257–260, 265–271, 274, 291, 292, 294–300, 303, 304, 313–315, 317–322, 349–360, 365–368, 371.

  4. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and P.D. Desai, Thermal Expansion Metallic Elements and Alloys (Plenum Press, New York, 1975), Vol. 12, pp. 208–218, 236–240, 280–284, 316–322, 354–364.

  5. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee, Thermal Expansion Nonmetallic Solids (Plenum Press, New York, 1977), Vol. 13, pp. 848–852, 858–865, 879–883, 891–895, 926–934.

  6. Properties and Selection: Stainless Steels, Tool Materials and Special-Purpose Materials, Metals Handbook, 9th ed., Vol. 3, (American Society for Metals, Metals Park, OH, 1980), pp. 314–349.

  7. G.M. Song, Y.J. Wang, and Y. Zhou, Mater. Sci. Eng. A A334, 223 (2002).

    Article  CAS  Google Scholar 

  8. G.M. Song, Y.J. Wang, and Y. Zhou, J. Mater. Sci. 36, 4625 (2001).

    Article  CAS  Google Scholar 

  9. K. Upadhya, J-M. Yang, and W.P. Hoffman, Bull. Am. Ceram. Soc. 76, 51 (1997).

    CAS  Google Scholar 

  10. G.P. Sutton, Rocket Propulsion Elements: An Introduction to the Engineering of Rockets, 6th ed. (John Wiley & Sons, New York, 1992), pp. 483–488.

  11. L.M. Sheppard, Bull. Am. Ceram. Soc. 69, 1012 (1990).

    Google Scholar 

  12. Z.K. Liu and Y.A. Chang, J. Alloys Compd. 299, 153 (2000).

    Article  CAS  Google Scholar 

  13. Powder Diffraction Files Card Nos. 4-806 for W, No. 5-702 for Re, 25-1047 for WC(hexagonal), 20-1316 for WC1-x(cubic), 35-784 for ZrC, 4-826 for Cu, and 18-466 for Zr2Cu (International Center for Diffraction Data, Newtown Square, PA, 1981).

  14. K.H. Sandhage and P. Kumar, U.S. Patent No. 6 407 022 (June 18, 2002).

  15. M.B. Dickerson, R.L. Snyder, and K.H. Sandhage, J. Am. Ceram. Soc. 85, 730 (2002).

    Article  CAS  Google Scholar 

  16. P. Kumar and K.H. Sandhage, J. Mater. Sci. 34, 5757 (1999).

    Article  CAS  Google Scholar 

  17. K.A. Rogers, P. Kumar, R. Citak, and K.H. Sandhage, J. Am. Ceram. Soc. 82, 757 (1999).

    Article  CAS  Google Scholar 

  18. P. Kumar, S.A. Dregia, and K.H. Sandhage, J. Mater. Res. 14, 3312 (1999).

    Article  CAS  Google Scholar 

  19. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, New York, 1988), pp. 11–25.

    Google Scholar 

  20. N. Saunders, CALPHAD 9, 297 (1985).

    Article  CAS  Google Scholar 

  21. O.J. Kleppa and S. Watanabe, Metall. Trans. B. 13B, 391 (1982).

    Article  CAS  Google Scholar 

  22. I. Barin, Thermochemical Data of Pure Substances, 3rd ed. (VCH Verlagsgesellschaft, Weinheim, Germany, 1995), pp. 1788, 1860.

    Book  Google Scholar 

  23. D.A. Jones, Principles and Prevention of Corrosion, 2nd ed. (Prentice Hall, Upper Saddle River, NJ, 1996), p. 116.

    Google Scholar 

  24. C. Gaukel, M. Kluge, and H.R. Schober, J. Non-Cryst. Solids. 250–252, 664 (1999).

    Article  Google Scholar 

  25. J. Henderson and L. Young, Trans. Metall. Soc. AIME. 221, 72 (1961).

    CAS  Google Scholar 

  26. C. Wagner, J. Phys. Colloid Chem. 53, 1030 (1949).

    Article  CAS  Google Scholar 

  27. R.A. Andrievskii, Yu. F. Khromov, and I.S. Alekseeva, Fiz. Metal. Metalloved. 32, 664 (1971).

    CAS  Google Scholar 

  28. S. Sarian and J.M. Criscione, J. Appl. Phys. 38, 1794 (1967).

    Article  Google Scholar 

  29. C.P. Buhsmer and P.H. Crayton, J. Mater. Sci. 6, 981 (1971).

    Article  CAS  Google Scholar 

  30. Yu. N. Vilk, S.S. Nikolskii, and R.G. Avarbe, Teplofiz. Vys. Temp. 5, 607 (1967).

    CAS  Google Scholar 

  31. A. Shepela, J. Less-Common Met. 26, 33 (1972).

    Article  CAS  Google Scholar 

  32. I. Kovenskii, in Diffusion in Body-Centered Cubic Metals (American Society for Metals, Metals Park, OH, 1965), p. 283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken H. Sandhage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grzesik, Z., Dickerson, M.B. & Sandhage, K.H. Incongruent reduction of tungsten carbide by a zirconium-copper melt. Journal of Materials Research 18, 2135–2140 (2003). https://doi.org/10.1557/JMR.2003.0299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0299

Navigation