Skip to main content
Log in

Nanoindentation measurements on Cu–Sn and Ag–Sn intermetallics formed in Pb-free solder joints

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoindentation testing has been used to measure the hardness and elastic modulus of Ag3Sn, Cu6Sn5, and Cu3Sn intermetallics, as well as Sn–Ag–Cu solder and pure Sn and Cu. The intermetallics were fabricated by solid-state annealing of diffusion couples prepared from a substrate (Cu or Ag) and a solder material (Sn or Sn–Ag–Cu solder), providing geometries and length scales as close as possible to a real solder joint. Nanoindentation results for the intermetallics, representing penetration depths of 20–220 nm and loads from 0.7 to 9.5 mN, reveal elastic/plastic deformation without evidence of fracture. Measured hardness values of Cu6Sn5 (6.5 ± 0.3 GPa) and Cu3Sn (6.2 ± 0.4 GPa) indicate a potential for brittle behavior, while Ag3Sn (2.9 ± 0.2 GPa) appears much softer and ductile. Using a bulk Cu6Sn5 sample, Vickers hardness testing revealed an indentation size effect for this compound, with a hardness of 4.3 GPa measured at a load of 9.8 N. An energy balance model is used to explain the dependence of hardness with load or depth, where the observation of an increasing amount of fracture with applied load is identified as the primary mechanism. This result explains discrepancies between nanoindentation and Vickers results previously reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Morris, Jr., J.L. Freer Goldstein, and Z. Mei, in The Mechanics of Solder Alloy Interconnects, edited by D. Frear, H. Morgan, S. Burchett, and J. Lau (ITP, New York, 1994), pp. 7–41.

  2. J.L. Marshall, L. Ann Foster, and J.A. Sees, in The Mechanics of Solder Alloy Interconnects, edited by D. Frear, H. Morgan, S. Burchett, and J. Lau (ITP, New York, 1994), pp. 42–86.

  3. H.H. Manko, Solders and Soldering (McGraw-Hill, New York, 2001), pp. 61–167.

    Google Scholar 

  4. R.E. Pratt, E.I. Stromswold, and D.J. Quesnel, IEEE Trans. Comp. Pack. Manuf. Technol. A 19, 134 (1996).

    Article  CAS  Google Scholar 

  5. K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001).

    Article  CAS  Google Scholar 

  6. K. Suganuma, K.S. Kim, and S.H. Huh, in Proceedings 2001 International Symposium on Microelectronics, SPIE Vol. 4587 (IMAPS, Washington, DC, 2001), pp. 529–534.

    Google Scholar 

  7. Z.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000).

    Article  CAS  Google Scholar 

  8. D. Lewis, S. Allen, M. Notis, and A. Scotch, J. Electron. Mater. 31, 161 (2002).

    Article  CAS  Google Scholar 

  9. R.R. Chromik and E.J. Cotts, in Electronic Packaging Materials Science IX, edited by S.K. Groothuis, P.S. Ho, K. Ishida, and T. Wu (Mater. Res. Soc. Symp. Proc. 445, Pittsburgh, PA, 1997), pp. 31–36.

  10. R.R. Chromik, R.P. Vinci, S.L. Allen, and M.R. Notis, in Proceedings of SMTA International (SMTA, Edina, MN, 2002), p. 786.

    Google Scholar 

  11. R.J. Fields, S.R. Low III, and G.K. Lucey, Jr. in The Metal Science of Joining, edited by M.J. Cieslak, J.H. Perepezko, S. Kang, and M.E. Glicksman (The Minerals, Metals, and Mining Society, Warrendale, PA, 1991), pp. 165–174.

  12. L.M. Ostrovskaya, V.N. Rodin, and A.I. Kuznetsov, Soviet J. Non-Ferrous Metall. (Tsvetnye Metally) 26, 90 (1985).

    Google Scholar 

  13. B. Subrahmanyan, Trans. Jpn. Inst. Metals 130, 93 (1972).

    Article  Google Scholar 

  14. R. Cabaret, L. Guillet, and R. LeRoux, J. Inst. Metals 75, 391 (1949).

    Google Scholar 

  15. T.Y. Tsui, J. Vlassak, and W.D. Nix, J. Mater. Res. 14, 2196 (1999).

    Article  CAS  Google Scholar 

  16. T.S. Tsui, J. Vlassak, and W.D. Nix, J. Mater. Res. 14, 2204 (1999).

    Article  CAS  Google Scholar 

  17. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  18. A.C. Fischer-Cripps, Vacuum 58, 569 (2000).

    Article  CAS  Google Scholar 

  19. A.C. Fischer-Cripps, Nanoindentation (Springer, New York, 2002), pp. 126-141.

    Book  Google Scholar 

  20. M. Onishi and H. Fujibuchi, Trans. JIM 16, 539 (1975).

    Article  CAS  Google Scholar 

  21. P.J. Kay and C.A. Mackay, Trans. Inst. Met. Finish. 54, 68 (1976).

    Article  Google Scholar 

  22. D.B. Marshall and B.R. Lawn, in Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, edited by P.J. Blau and B.R. Lawn (American Society for Testing and Materials, Philadelphia, PA, 1986), pp. 26–46.

  23. P.M. Sargent, in Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, edited by P.J. Blau and B.R. Lawn (American Society for Testing and Materials, Philadelphia, PA, 1986), pp. 160–174.

  24. F. Fröhlich, P. Grau, and W. Grellmann, Phys. Status. Solidi A 42, 79 (1977).

    Article  Google Scholar 

  25. J. Gong and Y. Li, J. Mater. Sci. 35, 209 (2000).

    Article  CAS  Google Scholar 

  26. J. Gong, J. Wu, and Z. Guan, Mater. Lett. 38, 197 (1999).

    Article  CAS  Google Scholar 

  27. K. Sangwal, B. Surowska, and P. Blaziak, Mater. Chem. Phys. 77, 511 (2002).

    Article  Google Scholar 

  28. H. Li and R.C. Bradt, J. Mater. Sci. 28, 917 (1993).

    Article  CAS  Google Scholar 

  29. J.B. Quinn and G.D. Quinn, J. Mater. Sci. 32, 4331 (1997).

    Article  CAS  Google Scholar 

  30. A.A. Elmustafa and D.S. Stone, Acta Mater. 50, 3641 (2002).

    Article  CAS  Google Scholar 

  31. D. Tabor, The Hardness of Metals (Oxford University Press, Oxford, U.K., 1951), pp. 67–83.

    Google Scholar 

  32. J.S. Kang, R.A. Gagliano, G. Ghosh, and M.E. Fine, J. Electon. Mater. 31, 1238 (2002).

    Article  CAS  Google Scholar 

  33. D.W. Henderson, T. Gosselin, A. Sarkhel, S.K. Kang, W-K. Choi, and D-Y. Shih, J. Mater. Res. 17, 2775 (2002).

    Article  CAS  Google Scholar 

  34. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng, and J.K. Kivilahti, J. Mater. Res. 17, 1 (2002).

    Article  Google Scholar 

  35. K.S. Kim, S.H. Huh, and K. Suganuma, Mater. Sci. Eng. A 333, 106 (2002).

    Article  Google Scholar 

  36. L.P. Lehman, R.K. Kinyanjui, L. Zavalij, A. Zribi, and E.J. Cotts, in Proceedings of the 53rd Electronic Components and Technology Conference (IEEE, Piscataway, NJ, 2003), p. 1215.

    Google Scholar 

  37. G. Ghosh (Paper presented at TMS Annual Meeting, March 2003).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chromik, R.R., Vinci, R.P., Allen, S.L. et al. Nanoindentation measurements on Cu–Sn and Ag–Sn intermetallics formed in Pb-free solder joints. Journal of Materials Research 18, 2251–2261 (2003). https://doi.org/10.1557/JMR.2003.0314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0314

Navigation