Skip to main content
Log in

Quantitative study of water transport during the hydrolysis of polymer coatings exposed to water vapor

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thermoset acrylic–melamine resins are widely used for automobile exterior coatings. These materials are formulated by reacting an acrylic polyol with an alkylated melamine. Because the reactions are reversible, acrylic–melamine coatings tend to hydrolyze during exposures in moist environments. During hydrolysis, water in the coating film is consumed. To keep the moisture content in the film in equilibrium, water must be transported from regions of high water concentration to regions of low water concentration. An approach based on Fourier transform infrared (FTIR) spectroscopy analysis of the coating degradation fitted to a transport model is presented to estimate the diffusion coefficients and velocities of water transport during the hydrolysis of an acrylic–melamine coating exposed to different relative humidities (RHs). Theoretical prediction agreed well with the experimental FTIR data of coating hydrolytic degradation. Generally, both the diffusion coefficient and velocity of water transport in the coating increased with increasing RH. Since water transport resulting from the hydrolysis reactions is a very slow and complex process, the approach presented here provides a viable means for obtaining valuable data for quantitative analyses of coating hydrolytic degradation at different RHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Bauer, J. Appl. Polym. Sci. 27, 3651 (1982).

    Article  CAS  Google Scholar 

  2. P.J. Schmitz, J.W. Holubka, and L.F Xu, J. Coatings Technol. 72, 39 (2000).

    Article  CAS  Google Scholar 

  3. T. Nguyen, J.W. Martin, E. Byrd, and N. Embree, J. Coatings Technol. 75, 37 (2003).

    Article  CAS  Google Scholar 

  4. J.A. Barrie, in Diffusion in Polymers, edited by J. Crank and G.S. Park (Academic Press, New York, NY, 1968), pp. 260–312.

  5. T. Nguyen, D. Bentz, and E. Byrd, J. Coatings Technol. 67, 37 (1995).

    CAS  Google Scholar 

  6. S. P. Rowland, ed., Water in Polymers, ACS Symposium Series 127 (American Chemical Society, Washington, DC, 1980).

  7. T. Alfrey, E.F. Gurnee, and W.G. Lloyd, J. Polym. Sci. 12, 249 (1966).

    Google Scholar 

  8. J. Crank, The Mathematics of Diffusion, 2nd ed. (Clarendon Press, Oxford, U.K., 1975).

    Google Scholar 

  9. N.L. Thomas and A.H. Windle, Polymer 23, 529 (1982).

    Article  CAS  Google Scholar 

  10. S. Govindjee and J.C. Simo, J. Mech. Phys. Solids 41, 863 (1993).

    Article  Google Scholar 

  11. W.R. Vieth, J.M., Howell, and J.H. Hsieh, J. Membrane Sci. 1, 177 (1976).

    Article  CAS  Google Scholar 

  12. X. Yi and J. Pellegrino, J. Polym. Sci., Part B: Polym. Phys. 40, 980 (2002).

    Article  CAS  Google Scholar 

  13. T.K. Kwei and H.M. Zupko, J. Polym. Sci., Part A-2 7, 876 (1969).

    Google Scholar 

  14. T.K. Kwei, T.T. Wang, and H.M. Zupko, Macromolecules 5, 645 (1972).

    Article  CAS  Google Scholar 

  15. J.P. Harmon, S. Lee, and J.C.M. Li, J. Polym. Sci., Part A: Polym. Chem. 25, 3215 (1987).

    Article  CAS  Google Scholar 

  16. H. Ouyang and S. Lee, J. Mater. Res. 11, 2794 (1997).

    Article  Google Scholar 

  17. H. Ouyang, C.C. Chen, S. Lee, and H. Yang, J. Polym. Sci., Part B: Polym. Phys. 36, 163 (1998).

    Article  CAS  Google Scholar 

  18. K.F. Chou and S. Lee, Polym. Sci. Eng. 40, 1025 (2000).

    Article  CAS  Google Scholar 

  19. K.F. Chou, C.C. Han, and S. Lee, Polym. Sci. Eng. 40, 1005 (2000).

    Google Scholar 

  20. A. Berge, S. Gudmensen, and J. Ulgelstad, Eur. Polym. J. 6, 981 (1970).

    Article  CAS  Google Scholar 

  21. T. Nguyen, J.W. Martin, E. Byrd, and N. Embree, Polym. Deg. Stab. 77, 1 (2002).

    Article  CAS  Google Scholar 

  22. T. Asada and S. Onogi, J. Colloid Sci. 18, 784 (1963).

    Article  CAS  Google Scholar 

  23. K.A. Schult and D.R. Paul, J. Polym. Sci., Polym. Phys. Ed. 34, 2805 (1996).

    Article  CAS  Google Scholar 

  24. J.A. Barrie and D. Machin, Trans. Faraday Soc. 67, 2971 (1971).

    Google Scholar 

  25. A.J. Kelkar and D.R. Paul, J. Membrane Sci. 181, 199 (2001).

    Article  CAS  Google Scholar 

  26. N.S. Schneider, L.V. Dusablon, E.W. Snell, and R.A. Prosser, J. Macromol. Sci., Phys. B 3, 623 (1969).

    Article  CAS  Google Scholar 

  27. W.R. Vieth, Diffusion In and Through Polymers, Principles and Applications (Hanser Publishers, New York, 1991), pp. 25–34.

    Google Scholar 

  28. G.K. van der Wel and O.C.G. Adan, Prog. Org. Coat. 37, 1 (1999).

    Article  CAS  Google Scholar 

  29. D.J. Mills and J.E.O. Mayne, in Corrosion Control by Organic Coatings, edited by H. Leidheiser, Jr. (National Association of Corrosion Engineers, Houston, TX, 1981), p. 12.

  30. M.I. Karyakina and W.E Kuzmak, Prog. Org. Coat. 18, 325 (1990).

    Article  CAS  Google Scholar 

  31. T. Nguyen, J. Hubbard, and J. Pommersheim, J. Coatings Technol. 68, 45 (1996).

    CAS  Google Scholar 

  32. H. Corti, R. Fernandez-Prini, and D. Gomez, Prog. Org. Coat. 10, 5 (1982).

    Article  CAS  Google Scholar 

  33. J. Richard, Polym. Adv. Technol. 6, 270 (1995).

    Article  CAS  Google Scholar 

  34. M. VanLandingham, T. Nguyen, J.W. Martin, and E. Byrd, J. Coatings Technol. 73, 43 (2001).

    Article  CAS  Google Scholar 

  35. X. Gu, D. Raghavan, T. Nguyen, and M. VanLandingham, Polym. Degrad. Stab. 74, 139 (2001).

    Article  CAS  Google Scholar 

  36. D. Raghavan, X. Gu, M. VanLandingham, and T. Nguyen, J. Polym. Sci., Polym. Phys. 39, 1460 (2001).

    Article  CAS  Google Scholar 

  37. J.B. Hubbard, T. Nguyen, and D. Bentz, J. Chem. Phys. 96, 3177 (1992).

    Article  CAS  Google Scholar 

  38. P.A. Thiel and T.E. Madey, Surface Sci. Rep. 7, 211 (1987).

    Article  CAS  Google Scholar 

  39. G.C. Pimentel and A.L. McClellan, The Hydrogen Bond (W.H. Freeman and Co., San Francisco, CA, 1960), pp. 212–214.

    Google Scholar 

  40. P. Musto, G. Ragosta, and L. Mascia, Chem. Mat. 12, 1331 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Nguyen, T., Byrd, E. et al. Quantitative study of water transport during the hydrolysis of polymer coatings exposed to water vapor. Journal of Materials Research 18, 2268–2275 (2003). https://doi.org/10.1557/JMR.2003.0316

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0316

Navigation