Skip to main content
Log in

Silver-nanoparticle dispersion from the consolidation of Ag-attached silica colloid

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Silver nanoparticles dispersed in a silica matrix were made by the consolidation of a Ag-attached silica colloid, which was synthesized via the electrolysis of a pure Ag electrode, the reduction of Ag+ ions by H2, and the nucleation and growth of Ag particles on the silica nanoparticles in water. This simple process produced Ag/silica nanocomposites with a high concentration and narrow size distribution of nanoparticles, which was confirmed by transmission electron microscopy and x-ray diffraction. As estimated by Raman and photoluminescence measurements, the quantity of broken oxygen bonds was increased with increasing Ag concentration due to the intervention of Ag ions as structural modifiers in the silica network structure. Ag ions in the matrix are probably a residue of the Ag+ ions that could not be reduced by H2 during the electrolysis/reduction reaction. The optical-absorption spectra and the HCl-soaking test suggested that a chemical-interface damping effect, which was caused by electron transfer from the metal particles to the oxide matrix, dominates the optical-absorption properties in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Borsella, G. De Marchi, F. Caccavale, F. Gonnella, G. Mattei, P. Mazzolodi, G. Battaglin, A. Quaranta, and A. Miotello, Silver cluster formation in ion-exchanged waveguides: Processing technique and phenomenological model, J. Non-Cryst. Solids 253, 261 (1999).

    Article  CAS  Google Scholar 

  2. P.W. Wang, Thermal stability of silver in ion-exchanged soda lime glasses, J. Vac. Sci. Technol. A 14, 465 (1996).

    Article  CAS  Google Scholar 

  3. P. Gangopadhyay, R. Kesavamoorthy, K.G.M. Nair, and R. Dhandapani, Raman scattering studies on silver nanoclusters in a silica matrix formed by ion-beam mixing, J. Appl. Phys. 88, 4975 (2000).

    Article  CAS  Google Scholar 

  4. H. Hofmeister, S. Thiel, M. Dubiel, and E. Schurig, Synthesis of nanosized silver particles in ion-exchanged glass by electron beam irradiation, Appl. Phys. Lett. 70, 1694 (1997).

    Article  CAS  Google Scholar 

  5. G. Yang, W. Wang, Y. Zhou, H. Lu, S.G. Yang, and Z. Chen, Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films, Appl. Phys. Lett. 81, 3969 (2002).

    Article  CAS  Google Scholar 

  6. G. De, L. Tapfer, M. Catalano, G. Battaglin, F. Caccavale, F. Gonella, P. Mazzoldi, and R.F. Hagliund Jr., Formation of copper and silver nanometer dimension clusters in silica by the sol-gel process, Appl. Phys. Lett. 68, 3820 (1996).

    Article  CAS  Google Scholar 

  7. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1999).

  8. W. Cai, L. Zhang, H. Zhong, and G. He, Annealing of mesoporous silica loaded with silver nanoparticles within its pores from isothermal sorption, J. Mater. Res. 13, 2888 (1998).

    Article  CAS  Google Scholar 

  9. S. Cheng, Y. Wei, Q. Feng, K-Y. Qui, J-B. Pang, S.A. Jansen, R. Yin, and K. Ong, Facile synthesis of mesoporous gold-silica nanocomposite materials via sol-gel process with nonsurfactant templates, Chem. Mater. 15, 1560 (2003).

    Article  CAS  Google Scholar 

  10. J. Cho, Y-W. Kim, B. Kim, J-G. Lee, and B. Park, Zero-strain intercalation cathode for rechargeable Li-ion cell, Angew. Chem. Int. Ed. 42, 1618 (2003).

    Article  CAS  Google Scholar 

  11. J.A. Lewis, Colloidal processing of ceramics, J. Am. Ceram. Soc. 83, 2341 (2000).

    Article  CAS  Google Scholar 

  12. R.K. Iler, Reduction and aggregation of silver ions at the surface of colloidal silica, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley, New York, 1979).

  13. D. Lawless, S. Kapoor, P. Kennepohl, D. Meisel, and N. Serpone, Reduction and aggregation of silver ions at the surface of colloidal silica, J. Phys. Chem. 98, 9619 (1994).

    Article  CAS  Google Scholar 

  14. C. Mohr, M. Dubiel, and H. Hofmeister, Formation of silver particles and periodic precipitate layers in silicate glass induced by thermally assisted hydrogen permeation, J. Phys.: Condens. Matter 13, 525 (2001).

    CAS  Google Scholar 

  15. K.S. Gadre and T.L. Alford, Contact angle measurements for adhesion energy evaluation of silver and copper films on parylenen and SiO2 substrates, J. Appl. Phys. 93, 919 (2003).

    Article  CAS  Google Scholar 

  16. P.A. Kralchevsky and N.D. Denkov, Capillary forces and structuring in layers of colloid particles, Curr. Opin. Colloid Interface Sci. 6, 383 (2001).

    Article  CAS  Google Scholar 

  17. I.V. Schweigert, K.E. Lehtinen, MJ. Carrier, and M.R. Zachariah, Structure and properties of silica nanoclusters at high temperatures, Phys. Rev. B 65, 235410-1 (2002).

  18. R.J. Hunter, Foundations of Colloidal Science (Oxford University Press, Oxford, U.K., 1986).

  19. E. Duval, H. Portales, L. Saviot, M. Fujii, K. Sumitomo, and S. Hayashi, Spatial coherence effect on the low-frequency Raman scattering from metallic nanoclusters, Phys. Rev. B 63, 075405-1 (2001).

  20. T. Kim, J. Oh, B. Park, and K.S. Hong, Correlation between strain and dielectric properties in ZrTiO4 thin films, Appl. Phys. Lett. 76, 3043 (2000).

    Article  CAS  Google Scholar 

  21. Y. Kim, J. Oh, T-G. Kim, and B. Park, Effect of microstructures on the microwave dielectric properties of ZrTiO4 thin films, Appl. Phys. Lett. 78, 2363 (2001).

    Article  CAS  Google Scholar 

  22. H. Zhang, B. Gilbert, F. Huang, and J.F. Banfield, Water-driven structure transformation in nanoparticles at room temperature, Nature 424, 1025 (2003).

    Article  CAS  Google Scholar 

  23. C. McGinley, M. Riedler, and T. Möller, Evidence for surface reconstruction on InAs nanocrystals, Phys. Rev. B 65, 245308 (2002).

    Article  Google Scholar 

  24. F.L. Galeener, Band limits and the vibrational spectra of tetrahe-dral glasses, Phys. Rev. B 19, 4292 (1979).

    Article  CAS  Google Scholar 

  25. S.K Sharma, D.W. Matson, J.A. Philpotts, and T.L. Roush, Raman study of the structure of glasses along the join SiO2-GeO2, J. Non-Cryst. Solids 68, 99 (1984).

    Article  CAS  Google Scholar 

  26. T. Furukawa, K.E. Fox, and W.B. White, Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses, J. Chem. Phys. 75, 3226 (1981).

    Article  CAS  Google Scholar 

  27. E. Borsella, F. Gonella, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, Spectroscopic investigation of silver in soda-lime glass, Chem. Phys. Lett. 284, 429 (1998).

    Article  CAS  Google Scholar 

  28. A.J. Fisher, W. Hayes, and A.M. Stoneham, Structure of the self-trapped exciton in quartz, Phys. Rev. Lett. 64, 2667 (1990).

    Article  CAS  Google Scholar 

  29. W. Joosen, S. Guizard, P. Martin, G Petite, P. Agostini, A.D. Santos, G. Grillon, D. Hulin, A. Migus, and A. Antonetti, Femtosecond multiphoton generation of the self-trapped exciton in alpha-SiO2, Appl. Phys. Lett. 61, 2260 (1992).

    Article  CAS  Google Scholar 

  30. Y. Sakurai, The 3.1 eV photoluminescence band in oxygen-deficient silica glass, J. Non-Cryst. Solids 271, 218 (2000).

    Article  CAS  Google Scholar 

  31. A.J. Miller, R.G. Leisure, V.A. Mashkov, and F.L. Galeener, Dominant role of E centers in x-ray-induced, visible luminescence in high-purity amorphous silicas, Phys. Rev. B 53, R8818 (1996).

  32. T. Yano, T. Nagano, J. Lee, S. Shibata, and M. Yamane, Cation site occupation by Ag+/Na+ ion-exchange in R2O-Al2O3-SiO2 glasses, J. Non-Cryst. Solids 270, 163 (2000).

    Article  CAS  Google Scholar 

  33. W. Cai, M. Tan, G. Wang, and L. Zhang, Reversible transition between transparency and opacity for the porous silica host dispersed with silver nanometer particles within its pores, Appl. Phys. Lett. 69, 2980 (1996).

    Article  CAS  Google Scholar 

  34. D.W. Oxtoby and N.H. Nachtrieg, Principles of Modern Chemistry, 2nd ed. (Saunder College Publishing, FL, 1990).

  35. Structure and Imperfections in Amorphous and Crystalline Silicon Dioxide, edited by R.A.B. Devine, J-P. Duraud, and E. Dooryhée (Wiley, New York, 2000).

  36. I. Kitagawa, T. Maruizumi, J. Ushino, K. Kubota, and M. Miyao, Dielectric degradation mechanism of SiO2 examined by first-principles calculations: Electronic conduction associated with electron trap levels in SiO2 and stability of oxygen vacancies under an electric field, Jpn. J. Appl. Phys. 39, 2021 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Gon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, TG., Kim, Y.W., Kim, J.S. et al. Silver-nanoparticle dispersion from the consolidation of Ag-attached silica colloid. Journal of Materials Research 19, 1400–1407 (2004). https://doi.org/10.1557/JMR.2004.0187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0187

Navigation