Skip to main content
Log in

Generation of silver/palladium nanoparticles by liquid flame spray

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ag–Pd alloy nanoparticles have been generated from silver and palladium nitrate precursors using a high temperature aerosol method, the liquid flame spray (LFS) process. In the LFS process, a spray aerosol of precursor liquid is introduced into a high-temperature H2–O2 flame. The primary micron-sized spray droplets evaporatein the flame, and the final particulate product is a result of the nucleation of the pure metal vapors shortly after the flame. In the study, three Ag–Pd molar ratios—10:90, 50:50, and 90:10—were used in the precursor. As a result of the synthesis, metalalloy nanoparticles with practically the same concentration ratios, correspondingly, were produced with the method. In the experiments, metal mass flow rates of 0.01–0.8 g/min were covered. The size of the particles was determined to be in the rangeof 10–50 nm by aerosol instrumentation. The particles were spherical and slightly agglomerated. It was concluded that the particle size can be controlled via the total precursor mass flow rate, and the composition can be controlled by the molar ratio of Ag and Pd compounds in the precursor liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.E. Newhamn and T.R. Shrout, in Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley Interscience, New York, 1991), 1, p. 601.

  2. T.T. Kodas and M.J. Hampden-Smith, Aerosol Processing of Materials 10 and 12, (Wiley-VCH, New York, 1999).

  3. E. Delarue, M. Mostafavi, M.O. Delcourt, and D. Regnault, Characterization of silver-palladium submicronic powders, J. Mater. Sci. 30, 628 (1995).

    Article  CAS  Google Scholar 

  4. K. Nagashima, T. Himeda, and A. Kato, Properties of conductive films made from fine spherical silver-palladium alloy particles, J. Mater Sci. 26, 2477 (1991).

    Article  CAS  Google Scholar 

  5. C.T. Pluym, T.T. Kodas, L-M. Wang, and H.D. Glicksman, Silver-palladium alloy particle production by spray pyrolysis, J. Mater. Res. 10, 1661 (1995).

    Article  CAS  Google Scholar 

  6. N. Iida, K. Nakayama, M. Lenggoro, and K. Okuyama, Oxidation behavior of spray pyrolyzed Ag-Pd alloy particle, J. Soc. Powder Technol., Japan 38, 542 (2001).

    Article  CAS  Google Scholar 

  7. S.E. Pratsinis, Flame aerosol synthesis of ceramic powders, Energy Combust. Sci. 24, 197 (1998).

    Article  CAS  Google Scholar 

  8. L. Mädler, W.J. Stark, and S.E. Pratsinis, Flame-made ceria nano-particles. J. Mater Res. 17, 1356 (2002).

    Article  Google Scholar 

  9. Y. Singh, J.R.N. Javier, S.H. Ehrman, M.H. Magnusson, and K. Deppert, Approaches to increasing yield in evaporation/ condensation nanoparticle generation, J. Aerosol Sci. 33, 1309 (2002).

    Article  CAS  Google Scholar 

  10. J. Tikkanen, M. Eerola, V. Pitkänen, and M. Rajala, Method and Equipment for Spraying Material, Patent No. 98832, 1997 (in Finnish).

  11. L. Mädler, H.K. Kammler, R. Mueller, and S.E. Pratsinis, Controlled synthesis of nanostructured particles by flame spray pyrolysis, J. Aerosol Sci. 33, 369 (2002).

    Article  Google Scholar 

  12. J. Tikkanen, K.A. Gross, C.C. Berndt, V. Pitkänen, J. Keskinen, S. Raghu, M. Rajala, and J. Karthikeyan, Characteristics of the liquid flame spray process, Surf. Coatings Technol. 90, 210 (1997).

    Article  CAS  Google Scholar 

  13. J. Karthikeyan, C.C. Berndt, J. Tikkanen, S. Reddy, and H. Herman, Plasma synthesis of nanomaterial powders and deposits, Mater. Sci. Eng. A238, 275 (1997).

    Article  CAS  Google Scholar 

  14. J. Karthikeyan, C.C. Berndt, J. Tikkanen, J.Y. Wang, A.H. King, and H. Herman, Preparation of nanophase materials by thermal spray processing of liquid precursors, Nanostruct. Mater. 9, 137 (1997).

    Article  CAS  Google Scholar 

  15. K.A. Gross, J. Tikkanen, J. Keskinen, V. Pitkänen, M. Eerola, R. Siikamäki, and M. Rajala, Liquid based flame spraying on hot glass surfaces, J. Therm. Spray Technol. 8, 583 (1999).

    Article  CAS  Google Scholar 

  16. H. Keskinen, J.M. Mäkelä, J.K. Liimatainen, M. Nurminen, and J. Keskinen, Generation of palladium nanoparticles by liquid flame spray for catalytic applications, Finnish association for aerosol research, Finland, Abstract to Czech-Finnish Aerosol Symposium 24–26.5. 2002, Prague.

  17. J.M. Mäkelä, H. Keskinen, T. Forsblom, and J. Keskinen, Generation of metal and metal oxide nanoparticles by liquid flame spray, J. Mater. Sci. (2003, in press).

  18. Binary Alloy Phase Diagrams, edited by T.B. Massalski, (American Society for Metals, New York, 1986), pp. 54–55.

  19. M. Koch, H. Lödding, M. Mölter, and F. Munzinger, Verdün-nungssystem für die messung hochkonzentrierter aerosol cmit op-tischen partikelzählern, Staub-Reinhaltung der Luft. 48, 341 (1988).

    CAS  Google Scholar 

  20. S.C. Wang and R.C. Flagan, Scanning electrical mobility spectrometer, Aerosol Sci. Technol. 13, 230 (1990).

    Article  CAS  Google Scholar 

  21. Y-S. Cheng, H-C. Yeh, and G.M. Kanapilly, Collection efficiencies of a point-to-plane electrostatic precipitator, Am. Ind. Hygiene Ass. 42, 605 (1981).

    Article  Google Scholar 

  22. J. Keskinen, K. Pietarinen, and M. Lehtimäki, Electrical low pressure impactor, J. Aerosol Sci. 23, 353 (1992).

    Article  CAS  Google Scholar 

  23. S.H. Ehrman and S.K. Friedlander, Bimodal distributions of two component metal oxide aerosols, Aerosol Sci. Technol, 30, 259 (1999).

    Article  CAS  Google Scholar 

  24. K.Y. Park, H.D. Jang, and C.S. Choi, Vapor-Phase synthesis and characterization of ultrafine iron powders, Aerosol Sci. Technol. 28, 215 (1998).

    Article  CAS  Google Scholar 

  25. R.S. Windeler, S.K. Friedlander, and K.E.J. Lehtinen, Production of nanometer-sized metal oxide particles by gas phase reaction in a free jet. I: Experiment systems and results, Aerosol Sci. Technol. 27, 174 (1997).

    Article  CAS  Google Scholar 

  26. L. Zhang, M.B. Ranade, and J.M. Gentry, Synthesis of nanophase silver particles using an aerosol reactor, J. Aerosol Sci. 33, 1559 (2002).

    Article  CAS  Google Scholar 

  27. K.E.J. Lehtinen, R.S. Windeler, and S.K. Friedlander, Prediction of nanoparticle size and the onset of dendrite formation using the method of characteristic times, J. Aerosol Sci. 27, 883 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Keskinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keskinen, H., Mäkelä, J.M., Vippola, M. et al. Generation of silver/palladium nanoparticles by liquid flame spray. Journal of Materials Research 19, 1544–1550 (2004). https://doi.org/10.1557/JMR.2004.0207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0207

Navigation