Skip to main content
Log in

Grain refinement at the nanoscale via mechanical twinning and dislocation interaction in a nickel-based alloy

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A nanostructured surface layer was formed on an Inconel 600 plate by subjecting it to surface mechanical attrition treatment at room temperature. Transmission electron microscopy and high-resolution transmission electron microscopy of the treated surface layer were carried out to reveal the underlying grain refinement mechanism. Experimental observations showed that the strain-induced nanocrystallization in the current sample occurred via formation of mechanical microtwins and subsequent interaction of the microtwins with dislocations in the surface layer. The development of high-density dislocation arrays inside the twin-matrix lamellae provides precursors for grain boundaries that subdivide the nanometer-thick lamellae into equiaxed, nanometer-sized grains with random orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Koch: The synthesis and structure of nanocrystalline materials produced by mechanical attrition. Nanostruct, Mater. 2, 109 (1993).

    Article  CAS  Google Scholar 

  2. H.J. Fecht, in Nanophase Materials, edited by G.C. Hadjipanayis and R.W. Siegel (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994), p. 125.

    Chapter  Google Scholar 

  3. N. Hansen: Cold deformation microstructures. MaterSci. Tech. 6, 1039 (1990).

    Article  CAS  Google Scholar 

  4. Y.M. Wang, M.W. Chen, H.W. Sheng, and E. Ma: Nanocrystalline grain structures developed in commercial purity Cu by low-temperature cold rolling. J. Mater. Res. 17, 3004 (2002).

    Article  CAS  Google Scholar 

  5. R.Z. Valiev, R.R. Mulyukov, V.V. Ovchinnikov, and V.A. Shabashov: Mossbauer analysis of submicrometer grained iron. Scr. Metall Mater. 25, 2717 (1991).

    Article  CAS  Google Scholar 

  6. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: The process of grain refinement in equal-channel angular pressing. Acta Mater. 46,3317(1998).

    Article  CAS  Google Scholar 

  7. A.P. Zhilyaev, S. Lee, G.V. Nurislamova, R.Z. Valiev, and T.G. Langdon: Microhardness and microstructural evolution in pure nickel during high-pressure torsion. Scr. Mater. 44, 2753 (2001).

    Article  CAS  Google Scholar 

  8. R.Z. Valiev and I.V. Alexandrov: Nanostructured materials from severe plastic deformation. Nanostruct. Mater. 12, 35 (1999).

    Article  Google Scholar 

  9. N.R. Tao, M.L. Sui, J. Lu, and K. Lu: Surface nanocrystallization of iron induced by ultrasonic shot peening. Nanostruct. Mater. 11, 433 (1999).

    Article  CAS  Google Scholar 

  10. W.P. Tong, N.R. Tao, Z.B. Wang, J. Lu, and K. Lu: Nitriding iron at lower temperatures. Science 299, 686 (2003).

    Article  CAS  Google Scholar 

  11. N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, and K. Lu: An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 50, 4603 (2002).

    Article  CAS  Google Scholar 

  12. A. Belyakov, T. Sakai, H. Miura, and K. Tsuzaki: Grain refinement in copper under large strain deformation. Philos. Mag. A 81, 2629 (2001).

    Article  CAS  Google Scholar 

  13. D.A. Hughes: Scaling of deformation-induced microstructures in fcc metals. Scr. Mater. 47, 697 (2002).

    Article  CAS  Google Scholar 

  14. D.A. Hughes and N. Hansen: Microstructure and strength of nickel at large strains. Acta Metall. 48, 2985 (2000).

    CAS  Google Scholar 

  15. B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf: Evolution off.c.c. deformation structures in polyslip. ActaMetal. 40, 205 (1992).

    Article  CAS  Google Scholar 

  16. X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu, and K. Lu: Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP. Acta Mater. 50, 2075 (2002).

    Article  CAS  Google Scholar 

  17. D.H. Shin, I. Kim, J. Kim, and K.T Park: Grain refinement mechanism during equal-channel angular pressing of a low-carbon steel. Acta Mater. 49, 1285 (2001).

    Article  CAS  Google Scholar 

  18. K Lu, J. Lu, Chinese Patent No. 01122980. 2 (2001); French Patent No. FR2812284 (2001).

  19. J.M. Manero, F.J. Gil, and J.A. Planell: Deformation mechanisms of Ti—6Al—4V alloy with a martensitic microstructure subjected to oligocyclic fatigue. ActaMaten 48,3353(2000).

    Article  CAS  Google Scholar 

  20. L.E. Murr, in Interfacial Phenomena in Metals and Alloys (Tech-books, Herndan, VA, 1975), p. 145.

    Google Scholar 

  21. M. Kumar, A.J. Schwartz, and W.E. King: Microstructural evolution during grain boundary engineering of low to medium stacking fault energy fcc materials. Acta Mater. 50, 2599 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, N.R., Wu, X.L., Sui, M.L. et al. Grain refinement at the nanoscale via mechanical twinning and dislocation interaction in a nickel-based alloy. Journal of Materials Research 19, 1623–1629 (2004). https://doi.org/10.1557/JMR.2004.0227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0227

Navigation