Skip to main content
Log in

Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We propose a nucleation theory-based analysis for incipient plasticity during nanoindentation and predict the statistical distribution of rate-dependent pop-in events for many nominally identical indentations on the same surface. In the framework of stress-assisted, thermally activated defect nucleation, we quantitatively rationalize new nanoindentation measurements on 4H SiC and extract the activation volume of the nucleation events that mark the onset of plastic flow. We also illustrate how this statistical approach can differentiate between unique nucleation events for different indenter tip geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.W. Gerberich, J.C. Nelson, E.T. Lilleodden, P. Anderson, and J.T. Wyrobek: Indentation Induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585 (1996).

    Article  CAS  Google Scholar 

  2. D.E. Kramer, K.B. Yoder, and W.W. Gerberich: Surface constrained plasticity: Oxide Rupture and the yield point process. Philos. Mag. A81, 2033 (2001).

  3. W.W. Gerberich, S.K. Venkataraman, H. Huang, S.E. Harvey, and D.L. Kohlstedt: The injection of plasticity by millinewton contacts. Acta Metall. Mater. 43, 1569 (1995).

    Article  CAS  Google Scholar 

  4. J.S. Field, M.V. Swain, and R.D. Dukino: Determination of fracture toughness from the extra penetration produced by indentationinduced pop-in. J. Mater. Res. 18, 1412 (2003).

    Article  CAS  Google Scholar 

  5. W.J. Wright, R. Saha, and W.D. Nix: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans. JIM. 42, 642 (2001).

    Article  CAS  Google Scholar 

  6. A.L. Greer, A. Castellero, S.V. Madge, I.T. Walker, and J.R. Wilde: Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys. Mater. Sci. Eng. A (2004, in press).

  7. C.A. Schuh and T.G. Nieh: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).

  8. C.A. Schuh and T.G. Nieh: A survey of instrumented indentation studies on metallic glasses. J. Mater. Res. 19, 46 (2004).

  9. N.Q. Chinh, G. Horváth, Z. Kovács, and J. Lendvai: Characterization of plastic instability steps occurring in depth-sensing indentation tests. Mater. Sci. Eng A 324, 219 (2002).

    Article  Google Scholar 

  10. G. Berces, N.Q. Chinh, A. Juhasz, and J. Lendvai: Occurrence of plastic instabilities in dynamic microhardness testing. J. Mater. Res. 13, 1411 (1998).

    Article  CAS  Google Scholar 

  11. S.G. Corcoran, R.J. Colton, E.T. Lilleodden, and W.W. Gerberich: Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B 55, R16057 (1997).

  12. M. Pang, D.F. Bahr, and K.G. Lynn: Effects of Zn addition and thermal annealing on yield phenomena of CdTe and Cd0.96Zn0.04Te single crystals by nanoindentation. Appl. Phys. Lett. 82, 1200 (2003).

    Article  CAS  Google Scholar 

  13. Y.L. Chiu and A.H.W. Ngan: A TEM investigation on indentation plastic zones in Ni3Al(Cr,B) single crystals. Acta Mater. 50, 2677 (2002).

  14. A. Gouldstone, H-J. Koh, K-Y. Zeng, A.E. Giannakopoulos, and S. Suresh: Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48, 2277 (2000).

    Article  CAS  Google Scholar 

  15. S. Suresh, T.G. Nieh, and B.W. Choi: Nano-indentation of copper thin films on silicon substrates. Scripta Mater. 41, 951 (1999).

    Article  CAS  Google Scholar 

  16. D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, and H.S. Leipner: Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 67, 172101 (2003).

    Article  Google Scholar 

  17. C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085 (1998).

    Article  CAS  Google Scholar 

  18. A. Gannepalli and S.K. Mallapragada: Atomistic studies of defect nucleation during nanoindentation of Au(001). Phys. Rev. B 66, 104103 (2002).

  19. J. Knap and M. Ortiz: Effect of indenter-radius size on Au(001) nanoindentation. Phys. Rev. Lett. 90, 226102 (2003).

  20. E.T. Lilleodden, J.A. Zimmerman, S.M. Foiles, and W.D. Nix: Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51, 901 (2003).

    Article  CAS  Google Scholar 

  21. J. Li, K.J. Van-Vliet, T. Zhu, S. Yip, and S. Suresh: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307 (2002).

    Article  CAS  Google Scholar 

  22. D.F. Bahr, D.E. Wilson, and D.A. Crowson: Energy considerations regarding yield points during indentation. J. Mater. Res. 14, 2269 (1999).

    Article  CAS  Google Scholar 

  23. Y.L. Chiu and A.H.W. Ngan: Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater. 50, 1599 (2002).

  24. S.A. Syed-Asif and J.B. Pethica: Nanoindentation creep of singlecrystal tungsten and gallium arsenide. Philos. Mag. A76, 1105 (1997).

  25. W. Wang, C.B. Jiang, and K. Lu: Deformation behavior of Ni3Al single crystals during nanoindentation. Acta Mater. 51, 6169 (2003).

    Article  CAS  Google Scholar 

  26. T.A. Michalske and J.E. Houston: Dislocation nucleation at nanoscale contacts. Acta Mater. 46, 391 (1998).

  27. B.J. Kooi, R.J. Poppen, N.J.M. Carvalho, J.T.M. DeHosson, and M.W. Barsoum: Ti3SiC2: A damage tolerant ceramic studied with nanoindentations and transmission electron microscopy. Acta Mater. 51, 2859 (2003).

    Article  CAS  Google Scholar 

  28. K.S. Lee, J.Y. Park, W-J. Kim, M.Y. Lee, C.H. Jung, and G.W. Hong: Effect of soft substrate on the indentation damage in silicon carbide deposited on graphite. J. Mater. Sci. 35, 2769 (2000).

    Article  CAS  Google Scholar 

  29. T.F. Page, W.C. Oliver, and C.J. McHargue: The deformation behavior of ceramic crystals subjected to very low load (nano)indentations. J. Mater. Res. 7, 450 (1992).

    Article  CAS  Google Scholar 

  30. K. Pohlmann, B. Bhushan, and K-H.Z. Gahr: Effect of thermal oxidation on indentation and scratching of single-crystal silicon carbide on microscale. Wear 237, 116 (2000).

    Article  CAS  Google Scholar 

  31. J. Woirgard, T. Cabioc’h, J.P. Riviere, and J.C. Dargenton: Nanoindentation characterization of SiC coatings prepared by dynamic ion mixing. Surf. Coat. Technol. 100, 128 (1998).

    Article  Google Scholar 

  32. A.B. Mann, M. Balooch, J.H. Kinney, and T.P. Weihs: Radial variations in modulus and hardness in SCS-6 silicon carbide fibers. J. Am. Ceram. Soc. 82, 111 (1999).

    Article  CAS  Google Scholar 

  33. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985).

  34. A.B. Mann and J.B. Pethica: The effect of tip momentum on the contact stiffness and yielding during nanoindentation testing. Philos. Mag. A 79, 577 (1999).

  35. A.B. Mann and J.B. Pethica: The role of atomic size asperities in the mechanical deformation of nanocontacts. Appl. Phys. Lett. 69, 907 (1996).

  36. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

  37. D.J. Green, An Introduction to the Mechanical Properties of Ceramics (Cambridge University Press, Cambridge, U.K., 1998).

  38. D.F. Bahr, D.E. Kramer, and W.W. Gerberich: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).

    Article  CAS  Google Scholar 

  39. N.I. Tymiak, D.E. Kramer, D.F. Bahr, J.T. Wyrobek, and W.W. Gerberich: Plastic strain and strain gradients at very small indentation depths. Acta Mater. 49, 1021 (2001).

    Article  CAS  Google Scholar 

  40. Y.I. Golovin, A.I. Tyurin, and B.Y. Farber: Time-dependent characteristics of materials and micromechanisms of plastic deformation on a submicron scale by a new pulse indentation technique. Philos. Mag. A82, 1857 (2002).

  41. B.Y. Farber, V.I. Orlov, and A.H. Heuer: Energy dissipation during high-temperature displacement-sensitive indentation in cubic zirconia single crystal. Phys. Status Solidi A 166, 115 (1998).

    Article  CAS  Google Scholar 

  42. Y.I. Golovin, A.I. Tyurin, and B.Y. Farber: Investigation of timedependent characteristics of materials and micromechanisms of plastic deformation on a submicron scale by a new pulse indentation technique. J. Mater. Sci. 37, 895 (2002).

    Article  CAS  Google Scholar 

  43. B.Y. Farber, V.I. Orlov, V.I. Nykitenko, and A.H. Heuer: Mechanisms of energy dissipation during displacement-sensitive indentation in Ge single crystals at elevated temperatures. Philos. Mag. A 78, 671 (1998).

    Article  CAS  Google Scholar 

  44. J.D. Kiely and J.E. Houston: Nanomechanical properties of Au (111), (001), and (110) surfaces. Phys. Rev. B 57, 12588 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuh, C.A., Lund, A.C. Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. Journal of Materials Research 19, 2152–2158 (2004). https://doi.org/10.1557/JMR.2004.0276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0276

Navigation