Skip to main content
Log in

Microstructural refinement and deformation twinning during severe plastic deformation of 316L stainless steel at high temperatures

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The present work focuses on the severe plastic deformation and deformation twinning of 316L austenitic stainless steel deformed at high temperatures (700 and 800 °C) using equal channel angular extrusion (ECAE). Very high tensile and compressive strength levels were obtained after ECAE without sacrificing toughness with relation to microstructural refinement and deformation twinning. The occurrence of deformation twinning at such high temperatures was attributed to the effect of high stress levels on the partial dislocation separation, i.e., effective stacking fault energy. High stress levels were ascribed to the combined effect of dynamic strain aging, high strain levels (∈ ∼ 1.16) and relatively high strain rate (2 s−1). At 800 °C, dynamic recovery and recrystallization took place locally leading to grains with fewer dislocation density and recrystallized grains, which in turn led to lower room temperature flow strengths than those from the samples processed at 700 °C but higher strain hardening rates. Apparent tension-compression asymmetry in the 700 °C sample was found to be the consequence of the directional internal stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.W. Simmons: High-nitrogen alloying of stainless steels. Mater. Sci. Eng. A 207, 159 (1996).

    Article  Google Scholar 

  2. V. Tsakiris and D.V. Edmonds: Martensite and deformation twinning in austenitic steels. Mater. Sci. Eng. A 273, 430 (1999).

    Article  Google Scholar 

  3. I. Karaman, H. Sehitoglu, H.J. Maier, and Y.I. Chumlyakov: Competing mechanisms and modeling of deformation in austen-itic stainless steel single crystals with and without nitrogen. Acta Mater. 49, 3919 (2001).

    Article  CAS  Google Scholar 

  4. I. Karaman, K. Gall, H. Sehitoglu, Y.I. Chumlyakov, and H.J. Maier: Deformation of single crystal Hadfield steel by twinning and slip. Acta Mater. 48, 1345 (2000).

    Article  CAS  Google Scholar 

  5. I. Karaman, H. Sehitoglu, A.J. Beaudoin, H.J. Maier, Y.I. Chumlyakov, and C.N. Tome: Modeling the deformation behavior of Hadfield steel single and polycrystals due to twinning and slip. Acta Mater. 48, 2031 (2000).

    Article  CAS  Google Scholar 

  6. J.W. Christian and S. Mahajan: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).

    Article  Google Scholar 

  7. I. Karaman, H. Sehitoglu, Y.I. Chumlyakov, H.J. Maier, and I.V. Kireeva: The Effect of Twinning and Slip on the Bauschinger Effect of Hadfield Steel Single Crystals. Metall. Mater. Trans. A 32, 695 (2001).

    Article  Google Scholar 

  8. I. Karaman, H. Sehitoglu, Y.I. Chumlyakov, H.J. Maier, and I.V. Kireeva: Extrinsic stacking faults and twinning in Hadfield manganese steel single crystals. Scripta Mater. 44, 337 (2001).

    Article  CAS  Google Scholar 

  9. I. Karaman, H. Sehitoglu, Y.I. Chumlyakov, and H.J. Maier: The Deformation of Low-Stacking-Fault-Energy Austenitic Steels. JOM 54, 31 (2002).

    Article  CAS  Google Scholar 

  10. R.L. Peng, M. Oden, Y.D. Wang, and S. Johansson: Intergranular strains and plastic deformation of an austenitic stainless steel. Mater. Sci. Eng. A 334, 215 (2002).

    Article  Google Scholar 

  11. N. Narita and J. Takamura: Deformation twinning in silver-alloy and copper-alloy crystals. in Dislocations in Solids, edited by F.R.N. Nabarro, 1992, vol. 9, p. 135.

    Google Scholar 

  12. I.A. Yakubtsov, A. Ariapour, and D.D. Perovic: Effect of nitrogen on stacking fault energy of f.c.c. iron-based alloys. Acta Mater. 47, 1271 (1999).

    Article  CAS  Google Scholar 

  13. M. Fujita, Y. Kaneko, A. Nohara, H. Saka, R. Zauter, and H. Mughrabi: Temperature dependence of the dissociation width of dislocations in a commercial 304L stainless steel. ISIJ Int. 34, 697 (1994).

    Article  CAS  Google Scholar 

  14. Y.I. Chumlyakov, I.V. Kireeva, A.D. Korotaev, and L.S. Aparova: Plastic deformation of single crystals of austenitic stainless steel single crystal strengthened by nitrogen. 2. Orientation dependence of deformational strengthening coefficient. Phy. Met. Metall. 75, 218 (1993).

    Google Scholar 

  15. Y.I. Chumlyakov, I.V. Kireeva, and A.D. Korotaev: Plastic deformation of austenitic stainless steel single crystal strengthened by nitrogen. Phy. Met. Metall. 73, 429 (1992).

    Google Scholar 

  16. Y.I. Chumlyakov, I.V. Kireeva, and O.V. Ivanova: Plastical deformation of single crystals of austenitic stainless steel strengthened by nitrogen. 3. Asymmetry and orientational dependence of critical shearing stresses in steels with different stacking fault energies. Phy. Met. Metall. 78, 350 (1994).

    Google Scholar 

  17. T.S. Byun: On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels. Acta Mater. 51, 3063 (2003).

    Article  CAS  Google Scholar 

  18. E.H. Lee, T.S. Byun, J.D. Hunn, M.H. Yoo, K. Farrell, and L.K. Mansur: On the origin of deformation microstructure in aus-tenitic stainless steel: part I—microstructures. Acta Mater. 49, 3269 (2001).

    Article  CAS  Google Scholar 

  19. E.H. Lee, M.H. Yoo, T.S. Byun, J.D. Hunn, K. Farrell, and L.K. Mansur: On the origin of deformation microstructures in austenitic stainless steel: Part II—Mechanisms. Acta Mater. 49, 3277 (2001).

    Article  CAS  Google Scholar 

  20. E.H. Lee, T.S. Byun, J.D. Hunn, K. Farrell, and L.K. Mansur: Origin of hardening and deformation mechanisms in irradiated 316 LN austenitic stainless steel. J. Nucl. Mater. 296, 183 (2001).

    Article  CAS  Google Scholar 

  21. T.S. Byun, K. Farrell, E.H. Lee, J.D. Hunn, and L.K. Mansur: Strain hardening and plastic instability properties of austenitic stainless steels after proton and neutron irradiation. J. Nucl. Mater. 298, 269 (2001).

    Article  CAS  Google Scholar 

  22. R.L. Peng, M. Oden, Y.D. Wang, and S. Johansson: Intergranular strains and plastic deformation of an austenitic stainless steel. Mater. Sci. Eng. A. 334, 215 (2002).

    Article  Google Scholar 

  23. L.H. Almeida, I.L. May, and P.R. Emygdio: Mechanistic Modeling of Dynamic Strain Aging in Austenitic Stainless Steels. Mater. Charac. 41, 137 (1998).

    Article  Google Scholar 

  24. E.S. Puchi-Cabrera: High temperature deformation of 316L stainless steel. Mater. Sci. Technol. 17, 155 (2001).

    Article  Google Scholar 

  25. S.H. Cho, Y.C. Yoo, and J.J. Jonas: Static and dynamic strain aging in 304 austenitic stainless steel at elevated temperatures. J. Mater. Sci. Lett. 19, 2019 (2000).

    Article  CAS  Google Scholar 

  26. K.G. Samuel, S.L. Mannan, and P. Rodriguez: Serrated yielding in AISI 316 stainless steel. Acta Metall. 36, 2323 (1988).

    Article  CAS  Google Scholar 

  27. E.S. Puchi-Cabrera: Mechanical behaviour of 316L stainless steel under warm working conditions. Mater. Sci. Tech. 19, 189 (2003).

    Article  CAS  Google Scholar 

  28. S. Venugopal, S.N. Mannan, and Y.V.R.K. Prasad: Optimization of cold and warm workability in stainless steel type AISI 316L using instability maps. J. Nucl. Mater. 227, 1 (1995).

    Article  CAS  Google Scholar 

  29. S. Venugopal, S.N. Mannan, and Y.V.R.K. Prasad: Processing map for hot-working of stainless-steel type AISI-316L. Mater. Sci. Technol. 9, 899 (1993).

    Article  CAS  Google Scholar 

  30. K. Tsuzaki, T. Hori, T. Maki, and I. Tamura: Dynamic strain aging during fatigue deformation in type 304 austenitic stainless steel. Mater. Sci. Eng. 61, 247 (1983).

    Article  Google Scholar 

  31. A.K. Sanchdev and M.M. Shea: Twinning in metastable Fe–Ni-C austenite during elevated temperature deformation. Mater Sci. Eng. 95, 31 (1987).

    Article  Google Scholar 

  32. M.X. Zhang and P.M. Kelly: Relationship between stress-induced martensitic transformation and impact toughness in low carbon austenitic steels. J. Mater. Sci. 37, 3603 (2002).

    Article  CAS  Google Scholar 

  33. Z. Khan and M. Ahmed: Stress-induced martensitic transformation in metastable austenitic stainless steels: Effect on fatigue crack growth rate. J. Mater. Eng. Perf. 5, 201 (1996).

    Article  CAS  Google Scholar 

  34. X. Feaugas: On the origin of the tensile flow stress in the stainless steel AISI 316L at 300K: back stress and effective stress. Acta Mater. 47, 3617 (1999).

    Article  CAS  Google Scholar 

  35. A. Belyakov, T. Sakai, and H. Miura: Microstructure and deformation behaviour of submicrocrystalline 304 stainless steel produced by severe plastic deformation. Mater. Sci. Eng. A. 319, 867 (2001).

    Article  Google Scholar 

  36. S.V. Dobatkin: Grain Refinement and Phase Transformations in Al and Fe Based Alloys During Severe Plastic Deformation in Ultrafine Grained Materials II, in Ultrafine Grained Materials II, edited by Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, and T.C. Lowe (Proceedings of 2002 TMS Annual Meeting, TMS, Warrendale, PA, 2002), p. 183.

    Google Scholar 

  37. B.P. Kashyap, K. McTaggart, and K. Tangri: Study on the substructure evolution and flow behaviour in type 316L stainless steel over the temperature range 21–900°C. Philos. Mag. A 57, 97 (1988).

    Article  CAS  Google Scholar 

  38. B.P. Kashyap and K. Tangri: On the hall-petch relationship and substructural evolution in type 316L stainless steel. Acta Metall. Mat. 43, 3971 (1995).

    Article  CAS  Google Scholar 

  39. T.C. Lowe and R.Z. Valiev: Producing Nanoscale Microstructures through Severe Plastic Deformation. JOM 52, 27 (2000).

    Article  CAS  Google Scholar 

  40. L.R. Cornwell, K.T. Hartwig, R.E. Goforth, and S.L. Semiatin: Erratum to the equal channel angular extrusion process for materials processing. Mater. Charac. 38, 119 (1997).

    Article  CAS  Google Scholar 

  41. J. Robertson, J-T. Im, I. Karaman, K.T. Hartwig, and I.E. Anderson: Consolidation of amorphous copper based powder by equal channel angular extrusion. J. Non-Cryst. Solids 317, 144 (2003).

    Article  CAS  Google Scholar 

  42. V.M. Segal: Materials processing by simple shear. Mater Sci. Eng. A 197, 157 (1995).

    Article  Google Scholar 

  43. J.S. Kallend, U.F. Kocks, A.D. Rollett, and R.H. Wenk: Operational texture analysis. Mater. Sci. Eng. A 132, 1 (1991).

    Article  Google Scholar 

  44. P. Mullner and C. Solenthaler: On the effect of deformation twinning on defect densities. Mater. Sci. Eng. A. 230, 107 (1997).

    Article  Google Scholar 

  45. M.J. Marcinkowski and D.S. Miller: The effect of ordering on the strength and dislocation arrangements in the Ni3Mn superlattice. Philos. Mag. 6, 871 (1961).

    Article  CAS  Google Scholar 

  46. S.M. Copley and B.H. Kear: The dependence of the width of a dissociated dislocation on dislocation velocity. Acta Metall. 16, 227 (1968).

    Article  CAS  Google Scholar 

  47. D. Goodchild, W.T. Roberts, and D.V. Wilson: Plastic deformation and phase transformation in textured austenitic stainless steel. Acta Metall. 18, 1137 (1970).

    Article  CAS  Google Scholar 

  48. M. Fujita, Y. Kaneko, A. Nohara, H. Saka, R. Zauter, and H. Mughrabi: Temperature dependence of the dissociation width of dislocations in a commercial 304L stainless steel. ISIJ J. 34, 697 (1994).

    Article  CAS  Google Scholar 

  49. I. Karaman, H. Sehitoglu, K. Gall, and Y.I. Chumlyakov: On the deformation mechanisms in single crystal Hadfield manganese steels. Scripta Mater. 38, 1009 (1998).

    Article  CAS  Google Scholar 

  50. Y.I. Chumlyakov, I.V. Kireeva, H. Sehitoglu, and I. Karaman: Twinning in Hadfield-Steel single crystals. Doklady Phys. 45, 101 (2000).

    Article  Google Scholar 

  51. R.M. Latanison and A.W. Ruff: Temperature dependence of stacking fault energy in Fe-Cr-Ni alloys. Metall. Trans. 2, 505 (1971).

    Article  Google Scholar 

  52. F. Lecroisey and A. Pineau: Martensitic transformations induced by plastic-deformation in Fe-Ni-Cr system. Metall. Trans. 3, 387 (1972).

    CAS  Google Scholar 

  53. H.J. Kestenbach: Effect of applied stress on partial dislocation separation and dislocation substructure in austenitic stainless-steel. Phil. Mag. 36, 1509 (1977).

    Article  CAS  Google Scholar 

  54. S.N. Monteiro and H.J. Kestenbach: Influence of grain orientation on the dislocation substructure in austenitic stainless steel. Metall. Trans. A 6, 938 (1975).

    Article  Google Scholar 

  55. H.S. Kim, M.H. Seo, and S.I. Hong: Finite element analysis of equal channel angular pressing of strain rate sensitive metals. J. Mater. Process. Technol. 130, 497 (2002).

    Article  Google Scholar 

  56. G.G. Yapici, I. Karaman, Z.P. Luo, and H. Rack: Microstructure and mechanical properties of severely deformed powder processed Ti-6Al-4V using equal channel angular extrusion. Scripta Mater. 49, 1021 (2003).

    Article  CAS  Google Scholar 

  57. I. Karaman, H.E. Karaca, H.J. Maier, and Z.P. Luo: The Effect of Severe Marforming on Shape Memory Characteristics of a Ti-Rich NiTi Alloy Processed Using Equal Channel Angular Extrusion. Metall. Mater. Trans. A 34, 2527 (2003).

    Article  Google Scholar 

  58. D.P. DeLo and S.L. Semiatin: Hot Working of Ti-6Al-4V via Equal Channel Angular Extrusion. Metall. Mater. Trans. A 30, 2473 (1999).

    Article  Google Scholar 

  59. M. Haouaoui, I. Karaman, H. Maier, and K.T. Hartwig: Microstructural evolution and mechanical behavior of bulk copper obtained by consolidation of micro- and nanopowders using equal channel angular extrusion. (2003, unpublished).

    Google Scholar 

  60. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000).

    Article  CAS  Google Scholar 

  61. W.F. Hosford, Mechanics of Crystals and Textured Polycrystals (Oxford University Press, Oxford, U.K., 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Karaman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yapici, G.G., Karaman, I., Luo, Z.P. et al. Microstructural refinement and deformation twinning during severe plastic deformation of 316L stainless steel at high temperatures. Journal of Materials Research 19, 2268–2278 (2004). https://doi.org/10.1557/JMR.2004.0289

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0289

Navigation