Skip to main content
Log in

Formation of U-type hexaferrites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The formation of U-type hexaferrites with the composition Ba4B2Fe36O60 (B = Co, Ni, Zn) was studied. Samples were characterized by means of x-ray diffraction, electron microscopy (with energy-dispersive spectroscopy), and thermogravimetric and thermomagnetic analyses. U-hexaferrites are formed from the intermediate phases M-hexaferrite (BaFe12O19) and Y-hexaferrite (Ba2B2Fe12O22), which at the same time represent units in the U-hexaferrites’ crystal structure. The preparation of monophase U-hexaferrites was made possible by combining high-energy milling or chemical coprecipitation with a calcination at 1250–1300 °C. Structural defects, such as stacking faults, were observed in monophase samples with a high-resolution transmission electron microscope. The observed defects can be regarded as seeds for the formation of other hexaferrite phases after prolonged calcination times or higher calcination temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Smit and H.P.J. Wijn, Ferrites (Philips’ Technical Library, Ei-denhoven, The Netherlands, 1959), Chap. IX.

    Google Scholar 

  2. R. Valenzuela, Magnetic Ceramics (Cambridge University Press, Cambridge, U.K., 1994), Chap. 2.3.

    Book  Google Scholar 

  3. J.A. Kohn, D.W. Eckart, and C.F. Cook, Jr.: Crystallography of the hexagonal ferrites. Science. 172, 519 (1971).

    Article  CAS  Google Scholar 

  4. E. Pollert: Crystal chemistry of magnetic oxides Part 2: Hexagonal ferrites. Prog. Cryst. Growth Charact. 11, 155 (1985).

    Article  CAS  Google Scholar 

  5. J. Kerecman, A. Tauber, T.R. Aucoin, and R.O. Savage: Magnetic properties of Ba4Zn2Fe36O60 single crystals. J. Appl. Phys. 39, 726 (1968).

    Article  CAS  Google Scholar 

  6. R.C. Pullar and A.K. Bhattacharya: The synthesis and characterization of Co2X (Ba2Co2Fe28O46) and Co2U (Ba4Co2Fe36O60) ferrite fibres, manufactured from a sol-gel proces. J. Mater. Sci. 36, 4805 (2001).

    Article  CAS  Google Scholar 

  7. G. Xiong, M. Xu, and Z. Mai: Magnetic properties of Ba4Co2Fe36O60 nanocrystals prepared through a sol-gel method. Solid State Commun. 118, 53 (2001).

    Article  CAS  Google Scholar 

  8. D. Lisjak and M. Drofenik: Synthesis and characterization of Zn2U (Ba4Zn2Fe36O60) hexaferrite powder. J. Appl. Phys. 93, 8011 (2003).

    Article  CAS  Google Scholar 

  9. D. Lisjak and M. Drofenik: The thermal stability range and magnetic properties of U-type hexaferrites. J. Magn. Magn. Mater. 272–276, 1817 (2004).

    Article  Google Scholar 

  10. G.S. Pawley: Unit-cell refinement from powder diffraction scans. J. Appl. Crystallogr. 14, 357 (1981).

    Article  CAS  Google Scholar 

  11. S.I. Kuznetsova, E.P. Naiden, and T.N. Stepanova: Topotactic reaction kinetics in the formation of the hexagonal ferrite Ba3Co2Fe24O41. Inorg. Mater. (Transl. Neorg. Mater.) 24, 856 (1988).

    Google Scholar 

  12. M.A. Vinnik, A.I. Aragonavskaya, and N.N. Semenova: Phase relations during formation of barium cobalt hexaferrite Ba3Co2Fe24O41 (Co2Z), studied by X-ray diffraction and microstructural methods. Inorg. Mater. (Transl. Neorgan. Mater.) 1, 1078 (1965).

    Google Scholar 

  13. C. Sudakar, G.N. Subbana, and T.R.N. Kutty: Wet chemical synthesis of multitcomponent hexaferrites by gel-to-crystallite conversion and their magnetic properties. J. Magn. Magn. Mater. 263, 253 (2003).

    Article  CAS  Google Scholar 

  14. Z. Šimša, A.V. Zalesskij, and K. Zaveta: Electrical properties of single crystals of hexagonal ferrites with W structure. Phys. Stat. Sol. 14, 485 (1966).

    Article  Google Scholar 

  15. J. van Landuyt, S. Amelickx, J.A. Kohn, and D.W. Eckart: Multiple beam direct lattice imaging of the hexagonal ferrites. J. Solid State Chem. 9, 103 (1974).

    Article  Google Scholar 

  16. Y. Hirotsu and H. Sato: Microsyntactic intergrowth and defects in barium ferrite compounds. J. Solid State Chem. 26, 1 (1978).

    Article  CAS  Google Scholar 

  17. J.D.M. MaConnell, J.L. Hutchinson, and J.S. Anderson: Electron microscopy of the barium ferrite layer structures. Proc. R. Soc. Lond. Ser. A 339, 1 (1974).

    Article  Google Scholar 

  18. S. Nicolopoulos, M. Vallet-Regi, and J.M. Gonzales-Calbet: HREM study and structure analysis of the Z(Ba3Cu2Fe24O41) hexagonal ferrite. Mater. Res. Bull. 25, 845 (1990).

    Article  CAS  Google Scholar 

  19. S. Nicolopoulos, M. Vallet-Regi, and J.M. Gonzalez-Calbet: Microstructural study of hexaferrite related compounds: Z(Ba3Cu2Fe24O41) and BaFe2O4 phase. Mater. Res. Bull. 25, 567 (1990).

    Article  CAS  Google Scholar 

  20. T. Tachibana, K. Ohta, T. Shimada, T. Nakagawa, T. Yamamotto, and M. Katsura: Study of thermally stable range and magnetic property of Z-type hexagonal ferrite: Ba3Co2-xFexFe24O41, in Digest of the 8th International Conference on Ferrites, edited by Abe Yamazaki (The Japan Society of Powder and Powder Metallurgy, 8th International Conference on Ferrites, Kyoto, Japan, 2000), p. 19.

    Google Scholar 

  21. N. Hiratsuka, R. Ikeda, R. Wada, and K. Kakizaki: Effects of substitution on high frequency characteristics for Co2Z hexagonal ferrite, in Proceedings of the 8th International Conference on Ferrites (8th International Conference on Ferrites, Kyoto, Japan, 2000), p. 939.

    Google Scholar 

  22. I-G. Chen, S-H. Hsu, and Y.H. Chang: Preparation and magnetic properties of Ba-Co2Z and Sr-Zn2Y ferrites. J. Appl. Phys. 87, 6247 (2000).

    Article  CAS  Google Scholar 

  23. L.M. Castelliz, K.M. Kim, and P.S. Boucher: Preparation, stability range and high frequency permeability of some ferroxplana compounds. J. Can. Ceram. Soc. 38, 57 (1969).

    CAS  Google Scholar 

  24. P. Lubitz and F.J. Rachford: Z type Ba hexagonal ferrites with tailored microwave properties. J. Appl. Phys. 91, 7613 (2002).

    Article  CAS  Google Scholar 

  25. O. Sakaguchi, T. Kagotani, D. Book, H. Nakamura, S. Sugimoto, M. Okada, and M. Homma: Synthesis and magnetic properties of ferroxplana type ferrite. Mater. Trans. 37, 878 (1996).

    Article  CAS  Google Scholar 

  26. H. Neumann and H.P.J. Wijn: Polycrystalline hexagonal Fe2W with varying ferrous content. J. Am. Ceram. Soc. 51, 536 (1968).

    Article  CAS  Google Scholar 

  27. A. Collomb, J.P. Mignot, and Y. Allain: Stability of monovalent copper in the W-type hexagonal ferrite: Ba(Cu+Fe3+)Fe16O27. J. Magn. Magn. Mater. 61, 4 (1986).

    Article  CAS  Google Scholar 

  28. F.K. Lotgering and P.H.G. Vromans: Chemical stability of metal-deficient hexagonal ferrites with W structure. J. Am. Ceram. Soc. 60, 416 (1977).

    Article  CAS  Google Scholar 

  29. E.M.C. Hujiser-Gerits and G.D. Rieck: Changes in microstructure of oriented Ba3Co2Fe24O41 material during sintering II. J. Appl. Crystallogr. 9, 18 (1976).

    Article  Google Scholar 

  30. M.A. Vinnik, A.I. Aragonavskaya, and N.N. Semenova: X-ray diffraction and microstructural investigation of phase relations in the formation of the barium cobalt hexagonal ferrite BaCo2Fe16O27. Rus. J. Inorg. Chem. (Transl. Z. Neorg. Chim.) 12, 18 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darja Lisjak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisjak, D., Makovec, D. & Drofenik, M. Formation of U-type hexaferrites. Journal of Materials Research 19, 2462–2470 (2004). https://doi.org/10.1557/JMR.2004.0317

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0317

Navigation