Skip to main content
Log in

Nanoindentation of Au and Pt/Cu thin films at elevated temperatures

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper describes the nanoindentation technique for measuring sputter-deposited Au and Cu thin films’ mechanical properties at elevated temperatures up to 130 °C. A thin, 5-nm Pt layer was deposited onto the Cu film to prevent its oxidation during testing. Nanoindentation was then used to measure elastic modulus and hardness as a function of temperature. These tests showed that elastic modulus and hardness decreased as the test temperature increased from 20 to 130 °C. Cu films exhibited higher hardness values compared to Au, a finding that is explauned by the nanocrystalline structure of the film. Hardness was converted to the yield stress using both the Tabor relationship and the inverse method (based on the Johnson cavity model). The thermal component of the yield-stress dependence followed a second-order polynomial in the temperature range tested for Au and Pt/Cu films. The decrease in yield stress at elevated temperatures accounts for the increased interfacial toughness of Cu thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.T. Read and J.W. Dally: A new method for measuring the strength and ductility of thin films. J. Mater. Res. 8, 1542 (1993).

    Article  CAS  Google Scholar 

  2. T.P. Weihs, S. Hong, J.C. Bravman, and W.D. Nix: Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin films. J. Mater. Res. 3, 931 (1988).

    Article  Google Scholar 

  3. S.P. Baker and W.D. Nix: Mechanical properties of compositionally modulated Au–Ni thin films: Nanoindentation and microcantilever deflection experiments. J. Mater. Res. 9, 3131, 3145 (1994).

    Article  CAS  Google Scholar 

  4. G.M. Pharr, D.S. Harding, and W.C. Oliver: Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, in Proceedings of the NATO Advanced Study Institute, edited by M. Nastasi, D.M. Parkin, and H. Gleiter. (Kluwer Academic Publishers, Netherlands, 1993), pp. 449–461.

    Google Scholar 

  5. M. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  6. G.M. Pharr, W.C. Oliver, and F. Brotzen: On the generality of the relationship between contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7, 613 (1992).

    Article  CAS  Google Scholar 

  7. W.C. Oliver and G.M. Pharr: J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  8. D. Tabor: The Hardness of Metals (Claredon Press, Oxford, U.K., 1951) p. 174.

    Google Scholar 

  9. D. Kramer, H. Huang, M. Kriese, J. Robach, J. Nelson, A. Wright, D. Bahr, and W.W. Gerberich: Yield strength predictions from the plastic zone around nanocontacts. Acta Mater. 47, 333 (1999).

    Article  CAS  Google Scholar 

  10. D.E. Kramer, A.A. Volinsky, N.R. Moody, and W.W. Gerberich: Substrate effects on indentation plastic zone development in thin soft films. J. Mater. Res. 16, 3150 (2001).

    Article  CAS  Google Scholar 

  11. W.D. Nix: Mechanical properties of thin films. Metal. Trans. A 20A, 2217 (1989).

    Article  CAS  Google Scholar 

  12. Y. Wei and J.W. Hutchinson: Steady-state crack growth and work of fracture for solids characterized by straun gradient plasticity. J. Mech. Phys. Solids 45, 1137 (1997).

    Article  CAS  Google Scholar 

  13. H. Inui, M. Matsumuro, D-H. Wu, and M. Yamaguchi: Temperature dependence of yield stress, deformation mode and deformation structure in single crystals of TiAl (Ti-56 at.%Al). Philos. Mag. A 75, 395 (1997).

    Article  CAS  Google Scholar 

  14. B.N. Lucas and W.C. Oliver: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601 (1999).

    Article  Google Scholar 

  15. B.N. Lucas: An experimental investigation of creep and viscoelastic properties using depth-sensing indentation techniques, Ph.D. Dissertation, The University of Tennessee, Knoxville, TN, 1997.

    Google Scholar 

  16. E.A. Stach, T. Freeman, A.M. Minor, D.K. Owen, J. Cumings, M.A. Wall, T. Chraska, R. Hull, J.W. Morris, Jr., A. Zettl, and U. Dahmen: Development of a nanoindenter for in-situ transmission electron microscopy and microanalysis. Microsc. and Microanal. 7, 507 (2001).

    Article  CAS  Google Scholar 

  17. B.D. Beake, and J.F. Smith: High-temperature nanoindentation testing of fused silica and other materials. Philos. Mag. A 82, 2179 (2003).

    Article  Google Scholar 

  18. J.F. Smith and S. Zheng: High temperature nanoscale mechanical property measurements. Surf. Eng. 16, 143 (2000).

    Article  CAS  Google Scholar 

  19. MTS Systems Corporation. Variable temperature nanoindentation (Oak Ridge, TN, 2004). World wide web: http://www.mts.com/ nano/Variable_temp.htm.

    Google Scholar 

  20. A.A. Volinsky: The role of geometry and plasticity in thin ductile film adhesion, Ph.D. Dissertation, University of Minnesota, Minneapolis, MN, 2000.

    Google Scholar 

  21. Thermal Accessory for MultiMode and Dimensions Scanning Probe Microscopes. Support Note No. 252, Rev. B, Digital Instruments, 1998.

    Google Scholar 

  22. D. Ivanov, R. Daniels, and S. Magonov: Exploring the hightemperature AFM and its use for studies of polymers. Digital Instruments Application Notes, 2001.

    Google Scholar 

  23. X. Xia: Micro/nanoprobing measurement of polymer coating/film mechanical properties, Ph.D. Dissertation, University of Minnesota, 2000.

    Google Scholar 

  24. O.D. Sherby: atIn Nature and Properties of Materials: An Atomistic Interpretation, edited by J. Pask (Wiley, New York, 1967) p. 376.

  25. L. Burakovsky, C.W. Greeff, and D.L. Preston: Analytic model of the shear modulus at all temperatures and densities. Phys. Rev. B 67, 094107 (2003).

    Article  Google Scholar 

  26. S.M. Collard and R.B. McLellan: High-temperature elastic constants of gold single-crystals. Acta Metall. Mater. 39, 3143 (1991).

    Article  CAS  Google Scholar 

  27. R.P. Vinci, E.M. Zielinski, and J.C. Bravman: Thermal straun and stress in copper thin films. Thin Solid Films 262, 142 (1995).

    Article  CAS  Google Scholar 

  28. W.W. Gerberich, A.A. Volinsky, N.I. Tymiak, and N.R. Moody: A brittle to ductile transition (BDT) in adhered thin films, in Thin Films-stresses and Mechanical Properties VIII, edited by R. Vinci, O. Kraft, N. Moody, P. Besser, and E. Snaffer II (Mater. Res. Soc. Symp. Proc. 594, Warrendale, PA, 2000). p. 351.

    Google Scholar 

  29. N.I. Tymiak, A.A. Volinsky, M.D. Kriese, S.A. Downs, and W.W. Gerberich: The role of plasticity in bi-material fracture with ductile interlayers. Metall. and Mater. Trans. A 31A, 863 (2000).

    Article  CAS  Google Scholar 

  30. A.A. Volinsky, J. Vella, I.S. Adhihetty, V. Sarihan, L. Mercado, B.H. Yeung, and W.W. Gerberich: Adhesion quantification of post-CMP copper to amorphous SiN passivation by nanoindentation, in Fundamentals of Nanoindentation and Nanotribiology II, edited by S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001) Q 5.3.1.

    Google Scholar 

  31. A.A. Volinsky, N.R. Moody, and W.W. Gerberich: Interfacial toughness measurements for thin films on substrates. Acta Mater. 50, 441 (2002).

    Article  CAS  Google Scholar 

  32. A.A. Volinsky, D.F. Bahr, M.D. Kriese, N.R. Moody, and W.W. Gerberich: Nanoindentation methods in interfacial fracture testing, Chapter 13 in Comprehensive Structural Integrity, edited by I. Milne, R.O. Ritchie, and B. Karihaloo, in Volume 8: Interfacial and Nanoscale Faulure, edited by W.W. Gerberich and W. Yang (Elsevier, New York, 2003).

    Google Scholar 

  33. Taher Sauf: University of Illinois at Urbana-Champaugn, Private Communication.

  34. C. Zener, D. van Winkle, and H. Nielson: Trans. A.I.M.E. 147, 98 (1942).

    Google Scholar 

  35. Ting-Sui Ke: Phys. Rev. 71, 533 (1947).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex A. Volinsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volinsky, A.A., Moody, N.R. & Gerberich, W.W. Nanoindentation of Au and Pt/Cu thin films at elevated temperatures. Journal of Materials Research 19, 2650–2657 (2004). https://doi.org/10.1557/JMR.2004.0331

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0331

Navigation