Skip to main content
Log in

Cavity growth rate in superplastic 5083 Al and AZ31 Mg alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The plasticity-controlled growth rate of cavities during superplastic deformation was statistically investigated for 5083 Al alloy and AZ31 Mg alloy. When the cavity growth rate was evaluated on the basis of macroscopic strain calculated using the displacement of the specimen, the growth rate for the Al alloy was larger than that for the Mg alloy. However, the growth rate of the Al alloy was in agreement with that of the Mg alloy when the cavity growth rate was evaluated on the basis of the microscopic strain due to grain boundary sliding. The results obtained lead to two conclusions: (i) the rate of cavity growth is not affected by the kind of materials, that is, the nature of the grain boundary, and (ii) the microscopic strain due to grain boundary sliding should be used to evaluate exactly the rate of cavity growth for superplastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Pilling and N. Ridley: Superplasticity in Crystalline Solids (The Institute of Metals, London, U.K., 1989), p. 102.

    Google Scholar 

  2. T.G. Langdon: Fracture processes in superplastic flow. Met. Sci. 16, 175 (1982).

    Article  Google Scholar 

  3. R.C. Gifkins: Grain rearrangements during superplastic deformation. J. Mater. Sci. 13, 1926 (1978).

    Article  CAS  Google Scholar 

  4. R.Z. Valiev and O.A. Kaibyshev: On the quantitative evaluation of superplastic flow mechanisms. Acta Metall. 12, 2121 (1983).

    Article  Google Scholar 

  5. T.G. Langdon: An investigation of the strain contributed by grain boundary sliding in superplasticity. Mater. Sci. Eng. A 174, 225 (1994).

    Article  Google Scholar 

  6. D. Hull and D.E. Rimmer: The growth of grain-boundary voids under stress. Philos. Mag. 4, 673 (1959).

    Article  CAS  Google Scholar 

  7. W. Beere and M.V. Speight: Creep cavitation by vacancy diffusion in plastically deforming solid. Met. Sci. 12, 172 (1978).

    Article  CAS  Google Scholar 

  8. J.W. Hancock: Creep cavitation without a vacancy flux. Met. Sci. 10, 319 (1976).

    Article  CAS  Google Scholar 

  9. G.H. Edward and M.F. Ashby: Intergranular fracture during power-law creep. Acta Metall. 27, 1505 (1979).

    Article  CAS  Google Scholar 

  10. A.H. Chokshi: The development of cavity growth maps for superplastic materials. J. Mater. Sci. 21, 2073 (1986).

    Article  CAS  Google Scholar 

  11. D.A. Miller and T.G. Langdon: Cavitation in a superplastic Al- Zn-Mg alloy. Trans. JIM 21, 123 (1980).

    Article  CAS  Google Scholar 

  12. R. Armstrong, I. Codd, R.M. Douthwaite, and N.J. Petch: The plastic deformation of polycrystalline aggregates. Philos. Mag. 7, 45 (1962).

    Article  CAS  Google Scholar 

  13. K. Kubota, M. Mabuchi, and K. Higashi: Processing and mechanical properties of fine-grained magnesium alloys. J. Mater. Sci. 34, 2255 (1999).

    Article  CAS  Google Scholar 

  14. M. Mabuchi, Y. Chino, and H. Iwasaki: Tensile properties at room temperature to 823 K of Mg-4Y-3RE alloy. Mater. Trans. 43, 2063 (2002).

    Article  CAS  Google Scholar 

  15. M. Mabuchi and K. Higashi: Strengthening mechanisms of Mg-Si alloys. Acta Mater. 44, 4611 (1996).

    Article  CAS  Google Scholar 

  16. J. Pilling and N. Ridley: Superplasticity in Crystalline Solids (The Institute of Metals, London, U.K., 1989), p. 48.

    Google Scholar 

  17. T.G. Langdon: The mechanical properties of superplastic materials. Metall. Trans. A 13A, 689 (1982).

    Article  Google Scholar 

  18. A. Arieli and A.K. Mukherjee: The rate-controlling deformation mechanisms in superplasticity—a critical assessment. Metall. Trans. A 13A, 717 (1982).

    Article  Google Scholar 

  19. C.C. Bampton and J.W. Edington: Microstructural observation of superplastic cavitation in fine grained 7475-Al. Metall. Trans. A A13, 1721 (1982).

    Article  Google Scholar 

  20. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps., 1st. ed. (Pergamon Press, New York, 1982), pp. 15, 21, 44.

    Google Scholar 

  21. T. Watanabe, S. Kimura, and S. Karashima: The effect of a grain boundary structural transformation on sliding in 〈101〉-tilt zinc bicrystals. Philos. Mag. A 49, 845 (1984).

    Article  Google Scholar 

  22. A.C.F. Cocks and M.F. Ashby: On creep fracture by void growth. Prog. Mater. Sci. 27, 189 (1982).

    Article  CAS  Google Scholar 

  23. J. Pilling and N. Ridley: Effect of hydrostatic pressure on cavitation in superplastic aluminium alloys. Acta Metall. 34, 669 (1986).

    Article  CAS  Google Scholar 

  24. H. Iwasaki, M. Mabuchi, and K. Higashi: Plastic cavity growth during superplastic flow in AA 7475 Al alloy containing a small amount of liquid. Acta Mater. 49, 2269 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasumasa Chino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chino, Y., Iwasaki, H. & Mabuchi, M. Cavity growth rate in superplastic 5083 Al and AZ31 Mg alloys. Journal of Materials Research 19, 3382–3388 (2004). https://doi.org/10.1557/JMR.2004.0431

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0431

Navigation