Skip to main content
Log in

Synthesis and characterization of tungsten oxide nanorods

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Single crystalline nanorods (15–200 nm in diameter and hundreds nanometers in length) have been formed on the carbon-covered W wires by simple electric heating under a vacuum of 5 × 10-4 Pa. The chemical composition and crystalline structure of the nanorods were carefully investigated by various characterization techniques such as scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, energy dispersive x-ray spectroscopy and electron energy loss spectroscopy. After ruling out any possible existence of carbon nanotubes (CNTs), tungsten carbide, W-Fe alloying, and formation of other types of tungsten oxides, monoclinic W18O49 phase has been well identified. The mechanism of nanorod formation of sub-tungsten oxide (~WO2.7 compared to WO3) will be discussed in relation to the sample preparation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E.B. Franke, C.L. Trimble, J.S. Hale, M. Schubert, and J.A. Woollam: Infrared switching electrochromic devices based on tungsten oxide. J. Appl. Phys. 88, 5777 (2000).

    CAS  Google Scholar 

  2. J.L. Solis, A. Hoel, V. Lantto, and G.G. Granqvist: Infrared spectroscopy study of electrochromic nanocrystalline tungsten oxide films made by reactive advanced gas deposition. J. Appl. Phys. 89, 2727 (2001).

    CAS  Google Scholar 

  3. L. Meda, R.C. Breitkopf, T.E. Haas, and R.U. Kirss: Investigation of electrochromic properties of nanocrystalline tungsten oxide thin film. Thin Solid Films 402, 126 (2002).

    CAS  Google Scholar 

  4. K.H. Lee, Y.H. Fang, W.J. Lee, J.J. Ho, K.H. Chen, and K.S. Liao: Novel electrochromic devices (ECD) of tungsten oxide (WO3) thin film integrated with amorphous silicon germanium photodetector for hydrogen sensor. Sens. Actuators B 69, 96 (2000).

    CAS  Google Scholar 

  5. M. Boulova, A. Gaskov, and G. Lucazeau: Tungsten oxide reactivity versus CH4, CO and NO2 molecules studied by Raman spectroscopy. Sens. Actuators B 81, 99 (2001).

    CAS  Google Scholar 

  6. G.R. Bamwenda and H. Arakawa: The visible light induced photocatalytic activity of tungsten trioxide powders. Appl. Catal. A 210, 181 (2001).

    CAS  Google Scholar 

  7. F.B. Li, G.B. Gu, X.J. Li, and H.F. Wan: Preparation, characterization and photo-catalytic behavior of WO3/TiO2 nanopowder. Acta Phys.—Chim. Sinica 16, 997 (2000).

    CAS  Google Scholar 

  8. J. Hao, S.A. Studenikin, and M. Cocivera: Transient photoconductivity properties of tungsten oxide thin films prepared by spray pyrolysis. J. Appl. Phys. 90, 5064 (2001).

    CAS  Google Scholar 

  9. E.K.H. Salje: Polarons and bipolarons in tungsten oxide, WO3-x. Eur. J. Solid State Inorg. Chem. 31, 651 (1994).

    Google Scholar 

  10. A. Aird, M.C. Domeneghetti, F. Mazzi, V. Tazzoli, and E.K.H. Salje: Sheet superconductivity in WO3-x: Crystal structure of the tetragonal matrix. J. Phys. Condens. Matter 10, L569 (1998).

    Google Scholar 

  11. M-I. Baraton, L. Merhari, H. Ferkel, and J-F. Castagnet: Comparison of the gas sensing properties of tin, indium and tungsten oxides nanopowders: Carbon monoxide and oxygen detection. Mater. Sci. Eng. C 19, 315 (2002).

    Google Scholar 

  12. J.L. Solis, S. Saukko, L. Kish, C.G. Granqvist, and V. Lantto: Semiconductor gas sensors based on nanostructured tungsten oxide. Thin Solid Films 391, 255 (2001).

    Article  CAS  Google Scholar 

  13. S.T. Li and M.S. El-Shall: Synthesis and characterization of photochromic molybdenum and tungsten oxide nanoparticles. Nanostruct. Mater. 12, 215 (1999).

    Article  Google Scholar 

  14. Y.Q. Zhu, W. Hu, W.K. Hsu, M. Terrones, N. Grobert, J.P. Hare, H.W. Kroto, D.R.M. Walton, and H. Terrones: Tungsten oxide tree-like structures. Chem. Phys. Lett. 309, 327 (1999).

    Article  CAS  Google Scholar 

  15. Z. Liu, Y. Bando, and C. Tang: Synthesis of tungsten oxide nanowires. Chem. Phys. Lett. 372, 179 (2003).

    Article  CAS  Google Scholar 

  16. Y. Koltypin, S.I. Nikitenko, and A. Gedanken: The sonochemical preparation of tungsten oxide nanoparticles. J. Mater. Chem. 12, 1107 (2002).

    Article  CAS  Google Scholar 

  17. W.B. Hu, Y.Q. Zhu, W.K. Hsu, B.H. Chang, M. Terrones, N. Grobert, H. Terrones, J.P. Hare, H.W. Kroto, and D.R.M. Walton: Generation of hollow crystalline tungsten oxide fibres. Appl. Phys. A 70, 231 (2000).

    Article  CAS  Google Scholar 

  18. R. Diehl, G. Brandt, and E. Salje: The crystal structure of triclinic WO3. Acta Crystallogr. B 34, 1105 (1978).

    Article  Google Scholar 

  19. E. Salje and K. Viswanathan: Physical properties and phase transitions in WO3. Acta Crystallogr. A 31, 356 (1975).

    Article  Google Scholar 

  20. A.J.H. Kim and K.L. Kim: A study of preparation of tungsten nitride catalysts with high surface area. Appl. Catal. A 181, 103 (1999).

    CAS  Google Scholar 

  21. A. Aird and E.K.H. Salje: Sheet superconductivity in twin walls: Experimental evidence of WO3-x. J. Phys. Condens. Mater. 10, L377 (1998).

    Google Scholar 

  22. Y.T. Zhu and A. Manthiram: New route for the synthesis of tungsten oxide bronzes. J. Solid State Chem. 110, 187 (1994).

    CAS  Google Scholar 

  23. A.A. Mohammad and M. Gillet: Phase transformations in WO3 thin films during annealing. Thin Solid Films 408, 302 (2002).

    Google Scholar 

  24. K. Viswanathan, K. Brandt, and E. Salje: Crystal structure and charge carrier concentration of W18O49. J. Solid State Chem. 36, 45 (1981).

    CAS  Google Scholar 

  25. M.M. Dobson and R.J.T. Tilley: A new pseudo-binary tungsten oxide, W17O47. Acta Crystallogr. B 44, 474 (1988).

    Google Scholar 

  26. J.M. Berak and M.J. Sienko: Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals. J. Solid State Chem. 2, 109 (1970).

    CAS  Google Scholar 

  27. R.R. Schlittler, J.W. Seo, J.K. Gimzewski, C. Durkan, M.S.M. Saifullah, and M.E. Welland: Single crystals of singlewalled carbon nanotubes formed by self-assembly. Science 292, 1136 (2001).

    CAS  Google Scholar 

  28. M. Chrisholm, Y. Wang, A.R. Lupini, G. Eres, A.A. Puretzky, B. Brinson, A.V. Melechko, D.B. Geohegan, H. Cui, M.P. Johnson, S.J. Pennycook, D.H. Lowndes, S. Arepalli, C. Kittrell, S. Sivaram, M. Kim, G. Lavin, J. Kono, R. Hauge, and R.E. Smalley: Comment on “Single crystals of single-walled carbon nanotubes formed by self-assembly”. Science 300, 1236b (2003).

    Google Scholar 

  29. M.E. Welland, C. Durkan, M.S.M. Saifullah, J.W. Seo, R.R. Schlittler, and J.K. Gimzewsk: Response to Comment on “Single crystals of single-walled carbon nanotubes formed by selfassembly”. Science 300, 1236c (2003).

    Google Scholar 

  30. N. Braidy, M.A. El Khakani, and G.A. Botton: Single-wall carbon nanotubes synthesis by means of UV laser vaporization. Chem. Phys. Lett. 354, 88 (2002).

    CAS  Google Scholar 

  31. C. Journet, W. Maser, P. Bernir, A. Loiseau, M. Delachapelle, S. Lefrant, P. Deniard, R. Lee, and J. Fischer: Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756 (1997).

    CAS  Google Scholar 

  32. O. Pyper, A. Kaschner, and C. Thomsen: In situ Raman spectroscopy of the electrochemical reduction of WO3 thin films in various electrolytes. Sol. Energy Mater. Sol. Cell. 71, 511 (2002).

    CAS  Google Scholar 

  33. J. Purans, A. Kuzmin, Ph. Parent, and C. Laffon: Study of the electronic structure of rhenium and tungsten oxides on the O K-edge. Physica B. Condens. Matter 259, 1157 (1999).

    Google Scholar 

  34. J. Purans, A. Kuzmin, Ph. Parent, and C. Laffon: X-ray absorption study of the electronic structure of tungsten and molybdenum oxides on the O K-edge. Electrochem. Acta 46, 1973 (2001).

    CAS  Google Scholar 

  35. D.W. Bullet: Bulk and surface electron states in WO3 and tungsten bronzes. J. Phys. C 16, 2197 (1983).

    Article  Google Scholar 

  36. P. Villars and L.D. Calvert: Person’s Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1991), p. 4792.

    Google Scholar 

  37. E. Lassner and W.D. Schubert: Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Kluwer Academic/Plenum Publishers, New York, NY, 1999), p. 85–176.

    Book  Google Scholar 

  38. Binary Alloy Phase Diagram, 2nd ed., edited by T.B. Massalski (ASM International, Metals Park, OH, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, D.Z., Yu-Zhang, K., Gloter, A. et al. Synthesis and characterization of tungsten oxide nanorods. Journal of Materials Research 19, 3665–3670 (2004). https://doi.org/10.1557/JMR.2004.0469

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0469

Navigation