Skip to main content
Log in

The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report on the fabrication of self-organized titanium oxide nanotube arrays of enhanced surface area prepared by anodic oxidation of a pure titanium sheet in electrolyte solutions containing potassium fluoride (KF) or sodium fluoride (NaF). The effects of electrolyte composition and concentration, solution pH, and the anodic potential on the formation of nanotubes and dimensions of the resulting nanotubes are detailed. Although nanotube arrays of length greater than 500 nm are not possible with hydrofluoric acid containing electrolytes [G.K. Mor, O.K. Varghese, M. Paulose, N. Mukherjee, C.A. Grimes, J. Mater. Res. 18, 2588 (2003)], by adjusting the pH of a KF containing electrolyte to 4.5 using additives such as sulfuric acid, sodium hydroxide, sodium hydrogen sulfate, and/or citric acid, we could increase the length of the nanotube-array to approximately 4.4 μm, an order of magnitude increase in length. The as-prepared nanotubes are composed of amorphous titanium oxide. Independent of the electrolyte composition, crystallization of the nanotubes to anatase phase occurred at temperatures ≥280 °C. Rutile formation occurred at the nanotube-Ti substrate interface at temperatures near 480 °C. It appears geometry constraints imposed by the nanotube walls inhibit anatase to rutile transformation. No disintegration of the nanotube array structure is observed at temperatures as high as 580 °C. The excellent structural and crystal phase stability of these nanotubes make them promising for both low- and high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.K. Varghese, D.W. Gong, M. Paulose, C.A. Grimes, and E.C. Dickey: Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156 (2003).

    Article  CAS  Google Scholar 

  2. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, and M. Aucouturier: Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf. Interface Anal. 27, 629 (1999).

    Article  CAS  Google Scholar 

  3. G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko, and C.A. Grimes: A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628 (2004).

    Article  CAS  Google Scholar 

  4. O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, and C.A. Grimes: Hydrogen sensing using titania nanotubes. Sens. Actuators B 93,338 (2003).

    Google Scholar 

  5. O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, and C.A. Grimes: Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 15, 624 (2003).

    Google Scholar 

  6. R. Beranek, H. Hildebrand, and P. Schmuki: Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid State Lett. 6, B12 (2003).

    Article  Google Scholar 

  7. G.K. Mor, O.K. Varghese, M. Paulose, N. Mukherjee, and C.A. Grimes: Fabrication of tapered, conical-shaped titania nanotubes. J. Mater. Res. 18, 2588 (2003).

    Article  CAS  Google Scholar 

  8. B.C. Yang, M. Uchida, H.M. Kim, X.D. Zhang, and T. Kokubo: Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25, 1003 (2004).

    Article  CAS  Google Scholar 

  9. Y.T. Sul, C.B. Johansson, Y. Jeong, and T. Albrektsson: The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med. Eng. Phys. 23, 329 (2001).

    Article  CAS  Google Scholar 

  10. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, and E.C. Dickey: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).

    Article  CAS  Google Scholar 

  11. O.K. Varghese, G.K. Mor, C.A. Grimes, M. Paulose, and N. Mukherjee: A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J. Nanosci. Nanotech. 4, 733 (2004).

    Article  CAS  Google Scholar 

  12. M. Adachi, Y. Murata, I. Okada, and S. Yoshikawa: Formation of titania nanotubes and applications for dye-sensitized solar cells. J. Electrochem. Soc. 150, G488 (2003).

    Article  Google Scholar 

  13. G. Giavaresi, R. Giardino, L. Ambrosio, G. Battiston, R. Gerbasi, M. Fini, L. Rimondini, and R. Torricelli: In vitro biocompatibility of titanium oxide for prosthetic devices nanostructured by low pressure metal-organic chemical vapor deposition. Int. J. Artif. Organs 26, 774 (2003).

    Article  CAS  Google Scholar 

  14. H.D. Jang, S.K. Kim, and S.J. Kim: Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J. Nanopart. Res. 3, 141 (2001).

    CAS  Google Scholar 

  15. R. Rodriguez, K. Kim, and J.L. Ong: In vitro osteoblast response to anodized titanium and anodized titanium followed by hydrothermal treatment. J. Biomed. Mater. Res. A 65, 352 (2003).

    Article  CAS  Google Scholar 

  16. O. Zinger, P.F. Chauvy, and D. Landolt: Scale-resolved electrochemical surface structuring of titanium for biological applications. J. Electrochem. Soc. 150, B495 (2003).

    Article  Google Scholar 

  17. P.I. Gouma and M.J. Mills: Anatase-to-rutile transformation in titania powders. J. Am. Ceram. Soc. 84, 619 (2001).

    Article  CAS  Google Scholar 

  18. H. Zhang and J.F. Banfield: Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation. J. Mater. Res. 15, 437 (2000).

    Article  CAS  Google Scholar 

  19. K-N.P. Kumar, K. Keizer, A.J. Burggraaf, T. Okubo, and H. Nagamoto: Textural evolution and phase transformation in titania mmbranes: Part 2. Supported membranes. J. Mater. Chem. 3, 1151 (1993).

    Article  CAS  Google Scholar 

  20. Y. Ohya, H. Saiki, T. Tanaka, and Y. Takahashi: Microstructure of TiO2 and ZnO films fabricated by sol-gel method. J. Am. Ceram. Soc. 79, 825 (1996).

    Article  CAS  Google Scholar 

  21. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemannt: Environmental applications of semiconductor photcatalysis. Chem. Rev. 95, 69 (1995).

    Article  CAS  Google Scholar 

  22. M.A. Fox and M.T. Dulay: Heterogeneous photocatalysis. Chem. Rev. 93, 341 (1993).

    Article  CAS  Google Scholar 

  23. M. Gratzel: Photoelectrochemical cells. Nature 414, 338 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyun Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Q., Paulose, M., Grimes, C.A. et al. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. Journal of Materials Research 20, 230–236 (2005). https://doi.org/10.1557/JMR.2005.0020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0020

Navigation