Skip to main content
Log in

Stability of Fe-based alloys with structure type C6Cr23

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Bulk metallic glass forms when liquid metal alloys solidify without crystallization. In the search for iron-based bulk glass-forming alloys of the metal–metalloid type (Fe–B- and Fe–C-based), crystals based on the structural prototype C6Cr23 often preempt the amorphous phase. Destabilizing this competing crystal structure could enhance glass formability. We carried out first-principles total energy calculations of enthalpy of formation to identify third elements that can effectively destabilize C6Cr23. Yttrium appears optimal among transition metals, and rare earths also are suitable. Atomic size is the dominant factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Ponnambalam, S.J. Poon, G.J. Shiflet, V.M. Keppens, R. Taylor, and G. Petculescu: Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys. Appl. Phys. Lett. 83, 1131 (2003).

    Article  CAS  Google Scholar 

  2. V. Ponnambalam, S.J. Poon, and G.J. Shiflet: Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 19, 1320 (2004).

    Article  CAS  Google Scholar 

  3. Z.P. Lu, C.T. Liu, J.R. Thompson, and W.D. Porter: Structural amorphous steels. Phys. Rev. Lett. 92, 245503 (2004).

    Article  CAS  Google Scholar 

  4. M. Mihalkovic and M. Widom: Cohesive energies of Fe-based glass-forming alloys. Phys. Rev. B 70, 144107 (2004).

    Article  Google Scholar 

  5. T. Egami and Y. Waseda: Atomic size effect of the formability of metallic glasses. J. Non-Cryst. Solids 64, 113 (1984).

    Article  CAS  Google Scholar 

  6. D.B. Miracle and O.N. Senkov: Topological criterion for metallic glass formation. Mater. Sci. Eng. A 347, 50 (2003).

    Article  Google Scholar 

  7. G. Kresse and J. Furthmuller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  8. G. Kresse and J. Hafner: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, RC558 (1993).

    Article  CAS  Google Scholar 

  9. P. Blochl: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  CAS  Google Scholar 

  10. G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  11. J.P. Perdew and Y. Wang: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).

    Article  CAS  Google Scholar 

  12. S.H. Vosko, L. Wilk, and M. Nusair: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 58, 1200 (1980).

    Article  CAS  Google Scholar 

  13. E. Moroni, G. Kresse, J. Hafner, and J. Furthmuller: Ultrasoft pseudopotentials applied to magnetic Fe, Co and Ni: From atoms to solids. Phys. Rev. B 56, 15629 (1997). M. Widom et al.: Stability of Fe-based alloys with structure type C6Cr23 J. Mater. Res., Vol. 20, No. 1, Jan 2005 241

    Article  CAS  Google Scholar 

  14. Structure and energy data is available on the Internet at http:// alloy.phys.cmu.edu.

  15. P. Villars: Pearson’s Handbook, Desk Edition (ASM International, Materials Park, OH, 1997).

    Google Scholar 

  16. C.B. Barber, D.P. Dobkin, and H.T. Huhdanpaa: The Quickhull algorithm for convex hulls, ACM Trans. Math. Software 22, 469 (1996), see web site http://www.qhull.org

    Article  Google Scholar 

  17. Binary Alloy Phase Diagrams, edited by T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzah: (ASM International, Materials Park, OH, 1990).

  18. Desk Handbook: Phase Diagrams for Binary Alloys, edited by H. Okamoto (ASM International, Materials Park, OH, 2000).

    Google Scholar 

  19. K.A. Gschneidner and F.W. Calderwood: The C-Y system. Bull. Alloy Phase Diag. 7, 564 (1986).

    Article  CAS  Google Scholar 

  20. H. Okamoto: C-Y. J. Phase Equilibria 17, 548 (1996).

    Article  Google Scholar 

  21. P. Villars, A. Prince, and H. Okamoto: Handbook of Ternary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1995).

    Google Scholar 

  22. R.E. Watson and L.H. Bennett: Crystalline and glassy phases of transition-metal-metalloid systems. Phys. Rev. B 43, 11642 (1991).

    Article  CAS  Google Scholar 

  23. W.H. Wang, Z. Bian, P. Wen, and M.X. Pan: Role of addition in formation and properties of Zr-based bulk metallic glasses. Intermetallics 10, 1249 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Widom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Widom, M., Mihalkovic, M. Stability of Fe-based alloys with structure type C6Cr23. Journal of Materials Research 20, 237–242 (2005). https://doi.org/10.1557/JMR.2005.0028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0028

Navigation