Skip to main content
Log in

Effect of cold rolling on the indentation deformation of AA6061 aluminum alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The indentation behavior of cold-rolled AA6061 Al alloy was investigated. Following the approach suggested by Tabor, indentation stress-indentation strain curves were constructed and analyzed. The indentation stress required to create the same indentation strain increases with an increase in the reduction of thickness, suggesting a strong effect of plastic deformation history on the deformation behavior of materials. Through the dislocation dynamics, the evolution of the dislocations underneath the indentation was correlated with the plastic deformation history and the indentation load. The plastic energy dissipated in indentation was then calculated and found to be proportional to the 3/2 power of the indentation load and the 3/4 power of the average dislocation density underneath the indentation. The ratio of the dissipated plastic energy to the total energy in the indentation was demonstrated to be a function of the deformation state in materials, independent of the indentation load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process. Acta Mater. 47, 579 (1999).

    Article  CAS  Google Scholar 

  2. C.P. Heason and P.B. Prangnell: Grain refinement and texture evolution during the deformation of Al to ultra-high strains by accumulative roll bonding (ARB). Mater. Sci. Forum 396, 429 (2002).

    Article  Google Scholar 

  3. B.Q. Han, and S. Yue: Processing of ultrafine ferrite steels. J. Mater. Process. Technol. 136, 100 (2003).

    Article  CAS  Google Scholar 

  4. W.Q. Cao, Q. Liu, A. Godfrey, and N. Hansen: Microstructure and texture evolution during annealing of an aluminium ARB material. Mater. Sci. Forum 408, 721 (2002).

    Article  Google Scholar 

  5. S.H. Lee, H. Utsunomiya, and T. Sakai: Microstructures and mechanical properties of ultra low carbon interstitial free steel severely deformed by a multi-stack accumulative roll bonding process. Mater. Trans. 45, 2177 (2004).

    Article  CAS  Google Scholar 

  6. K.T. Park, H.J. Kwon, W.J. Kim, and Y.S. Kim: Microstructural characteristics and thermal stability of ultrafine grained 6061 Al alloy fabricated by accumulative roll bonding process. Mater. Sci. Eng. A 316, 145 (2001).

    Article  Google Scholar 

  7. X. Huang, N. Tsuji, N. Hansen, and Y. Minamino: Microstructural evolution during accumulative roll-bonding of commercial purity aluminum. Mater. Sci. Eng. A 340, 265 (2003).

    Article  Google Scholar 

  8. Y.B. Lee, D.H. Shin, K.T. Park, and W.J. Nam: Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature. Script. Mater. 51, 355 (2004).

    Article  CAS  Google Scholar 

  9. G.U. Oppel: Biaxial elasto-plastic analysis of load and residual stresses (Load and residual stress effects on metal hardness). Exp. Mech. 21, 135 (1964).

    Article  Google Scholar 

  10. A.W. Eberhardt, R. Pandey, J.M. Williams, J.J. Weimer, D. Ila, and R.L. Zimmerman: The roles of residual stress and surface topography on hardness of Ti implanted Ti–6Al–4V. Mater. Sci. Eng. A 229, 147 (1997).

    Article  Google Scholar 

  11. W.R. Lafontaine, C.A. Paszkiet, M.A. Korhonen Ma, and C.Y. Li: Residual-stress measurements of thin aluminum metallizations by continuous indentation and x-ray stress measurement techniques. J. Mater. Res. 6, 2084 (1991).

    Article  CAS  Google Scholar 

  12. T.R. Simes, S.G. Mellor, and D.A. Hills: A note on the influence of residual-stress on measured hardness. J. Strain Analysis 19, 135 (1984).

    Article  Google Scholar 

  13. J.G. Swadener, B. Taljat, and G.M. Pharr: Measurement of residual stress by load and depth-sensing indentation with spherical indenters. J. Mater. Res. 16, 2091 (2001).

    Article  CAS  Google Scholar 

  14. F.Q. Yang, L.L. Peng, and K. Okazaki: Micro-indentation of aluminum processed by equal channel angular extrusion. J. Mater. Res. 19, 1243 (2004).

    Article  CAS  Google Scholar 

  15. F.Q. Yang, L.L. Peng, and K. Okazaki: Microindentation of aluminum. Metall. Mater. Trans. A 35, 3323 (2004).

    Article  Google Scholar 

  16. J.L. Hay, W.C. Oliver, A. Bolshakov, and G.M. Pharr: Using the ratio of loading slope and elastic stiffness to predict pile-up and constraint factor during indentation, in Fundamentals of Nanoindentation and Nanotribology, edited by N.R. Moody, W.W. Gerberich, N. Burnham, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 101.

    CAS  Google Scholar 

  17. G.E. Dieter: Mechanical Metallurgy, 2nd ed. (McGraw-Hill, Inc., New York, NY, 1976)

    Google Scholar 

  18. J.S. Field and M.V. Swain: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 (1993).

    Article  CAS  Google Scholar 

  19. D. Tabor: Hardness of Metals (Clarendon Press, Oxford, U.K., 1951).

    Google Scholar 

  20. F.Q. Yang, L.L. Peng, and K. Okazaki: Localized deformation of equal channel angular extruded aluminum. Mater. Sci. Forum 475–479, 425 (2005).

    Article  Google Scholar 

  21. Y. Bergström: A dislocation model for the strain-ageing behaviour of steel. Mater. Sci. Eng. 9, 101 (1972).

    Article  Google Scholar 

  22. T. Hasegawa, Y. Sakurai, and K. Okazaki: Grain size effect on thermal recovery during high temperature deformation of aluminum tested at constant true strain rates. Mater. Sci. Eng. A 346, 34 (2003).

    Article  Google Scholar 

  23. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Metals Handbook, Vol. 2, 10th ed. (ASM International, Materials Park, OH, 1991), p. 103.

  24. Y.T. Cheng and C.M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R44, 91 (2004).

    Article  Google Scholar 

  25. R. Hill: The Mathematical Theory of Plasticity (Clarendon Press, Oxford, U.K., 1950).

    Google Scholar 

  26. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).

    Article  CAS  Google Scholar 

  27. Y.T. Cheng, Z. Li, and C.M. Cheng: Scaling relationships for indentation measurements. Philos. Mag. A82, 1821 (2002).

    Article  Google Scholar 

  28. M.K. Shorshorov, S.I. Bulychev, and V.P. Alekin: Work of plastic and elastic deformation during indenter indentation. Sov. Phys. Dokl. 26, 769 (1981).

    Google Scholar 

  29. J. Malzender: Energy dissipated during spherical indentation. J. Mater. Res. 19, 1605 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, F., Du, W. & Okazaki, K. Effect of cold rolling on the indentation deformation of AA6061 aluminum alloy. Journal of Materials Research 20, 1172–1179 (2005). https://doi.org/10.1557/JMR.2005.0178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0178

Navigation