Skip to main content
Log in

High-temperature dislocation-precipitate interactions in Al alloys: An in situ transmission electron microscopy deformation study

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The fundamental processes controlling the high-temperature interaction of dislocations with precipitates in Al-alloys were investigated in real time by deforming specimens in situ in the transmission electron microscope at elevated temperature. The observations support a bypass mechanism involving the interaction of lattice dislocations with the precipitate–matrix interface dislocations, where the rate-limiting step in the interaction is the release of the dislocation from the particle. These observations are discussed in relation to high-temperature deformation processes and models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hull and D.J. Bacon: Introduction to Dislocations, 4th ed. (Butterworth-Heinemann, Oxford, U.K., 2001), p. 222.

    Google Scholar 

  2. L.M. Brown and R.K. Ham: Dislocation–particle interactions, in Strengthening Methods in Crystals, edited by A. Kelly and R.B. Nicholson (Elsevier, New York, NY, 1971), pp. 985–135.

    Google Scholar 

  3. R. Lagneborg, and B. Bergman: The stress/creep rate behavior of precipitation-hardened alloys. Metal Sci. 10(1), 20 (1976).

    Article  CAS  Google Scholar 

  4. E. Arzt and D.S. Wilkinson: Threshold stresses for dislocation climb over hard particles: The effect of an attractive interaction. Acta Metall. 34, 1893 (1986).

    Article  CAS  Google Scholar 

  5. J. Rösler, and E. Arzt: A new model-based creep equation for dispersion strengthened materials. Acta Metall. Mater. 38, 671 (1990).

    Article  Google Scholar 

  6. E. Arzt, G. Dehm, P. Gumbsch, O. Kraft, and D. Weiss: Interface controlled plasticity in metals: Dispersion hardening and thin film deformation. Prog. Mater. Sci. 46, 283 (2001).

    Article  CAS  Google Scholar 

  7. R.S. Mishra, T.K. Nandy, and G.W. Greenwood: The threshold stress for creep controlled by dislocation-particle interaction. Philos. Mag. A 69, 1097 (1994).

    Article  CAS  Google Scholar 

  8. L.M. Dougherty: Mechanisms operating during continuous dynamic recrystallization in an Al–4Mg–0.3Sc alloy, Ph.D. Thesis, University of Illinois, Urbana-Champaign (2003).

    Google Scholar 

  9. Properties and selection: Nonferrous alloys and pure metals, in ASM Metals Handbook, Vol. 2 (ASM, Metals Park, OH, 1979).

  10. K. Fukunaga, and Y. Miura: Electron microscopic analysis of dislocation strucutres in l12-al3sc intermetallic compound. J. Jpn. Inst. Metals 62, 369 (1998).

    Article  CAS  Google Scholar 

  11. S. Iwamura, M. Nakayama, and Y. Miura: Coherency between Al3Sc precipitate and the matrix in al alloys containing Sc. Mater. Sci, Forum 396–402, 1151 (2002).

    Article  Google Scholar 

  12. R.W. Hyland, Jr. and R.C. Stiffler: Determination of the elastic constants of polycrystalline al3sc. Scripta Metall. Mater. 25, 473 (1991).

    Article  CAS  Google Scholar 

  13. Y. Harada and D.C. Dunand: Thermal expansion of Al3Sc and Al3(Sc0.75X0.25). Scripta Mater. 48, 219 (2003).

    Article  CAS  Google Scholar 

  14. W.B. Pearson: A Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 2 (Pergamon Press, New York, 1967).

  15. B. Reppich: On the attractive particle-dislocation interaction in dispersion-strengthened material. Acta Mater. 46, 61 (1998).

    Article  CAS  Google Scholar 

  16. E.A. Marquis and D.C. Dunand: Model for creep threshold stress in precipitation-strengthened alloys with coherent particles. Scripta Mater. 47, 503 (2002).

    Article  CAS  Google Scholar 

  17. D.V. Kudashov, U. Martin, M. Heilmaier, and H. Oettel: Creep behaviour of ultrafine-grained oxide dispersion strengthened copper prepared by cryomilling. Mater. Sci. Eng. A 387–389, 639 (2004).

    Article  CAS  Google Scholar 

  18. M. Bartsch, A. Wasilkowska, A. Czyrska-Filemonowicz, and U. Messerschmidt: Dislocation dynamics in the oxide dispersion strengthened alloy incoloy MA956. Mater. Sci. Eng. A 272, 152 (1999).

    Article  Google Scholar 

  19. D. Häussler, B. Reppich, M. Bartsch, and U. Messerschmidt: Interaction processes between dislocations and particles in the ODS nickel-base superalloy inconel ma 754 studied by means of in situ straining in an hvem. Mater. Sci. Eng. A 309–310, 500 (2001).

    Article  Google Scholar 

  20. D. Häussler, M. Bartsch, U. Messerschmidt, and B. Reppich: HVTEM in situ observations of dislocation motion in the oxide dispersion strengthened superalloy MA754. Acta Mater. 49, 3647 (2001).

    Article  Google Scholar 

  21. D.J. Srolovitz, R.A. Petkovic-Luton, and M.J. Luton: Diffusional relaxation of the dislocation-inclusion repulsion. Philos. Mag. A 48, 795 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Robertson.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, B.G., Robertson, I.M., Dougherty, L.M. et al. High-temperature dislocation-precipitate interactions in Al alloys: An in situ transmission electron microscopy deformation study. Journal of Materials Research 20, 1792–1801 (2005). https://doi.org/10.1557/JMR.2005.0224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0224

Navigation