Skip to main content
Log in

Nanotubes patterned thin films of barium-strontium titanate

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel, low-temperature synthesis method for producing BaxSr(1−x)TiO3 (BST) thin films patterned in the form of nanotubes (“honeycomb”) on Ti substrates is reported. In this two-step method, the Ti substrate is first anodized to produce a surface layer (∼300 nm thickness) of amorphous titanium oxide nanotube (∼100 nm diameter) arrays. In the second step, the anodized substrate is subjected to hydrothermal treatment in aqueous Ba(OH)2 + Sr(OH)2 at 200 °C, where the nanotube arrays serve as templates for their topotactic (shape-preserving) hydrothermal conversion to polycrystalline BST nanotubes. A simple geometrical model is proposed to elucidate the mechanism of the hydrothermal growth of BST nanotubes. This opens the possibility of tailoring the titanium oxide nanotube arrays and of using various precursor solutions and their combinations in the hydrothermal bath to produce ordered, patterned thin-film structures of various Ti-containing ceramics. These could find use not only in a variety of electronic, optoelectronic, and sensor device applications but also in biomedical and catalysis applications, where patterned thin films are desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.D.E. Lakeman and D.A. Payne: Sol-gel processing of electrical and magnetic ceramics. Mater. Chem. Phys. 38, 305 (1994).

    Article  CAS  Google Scholar 

  2. O. Auciello and R. Ramesh: Electroceramic thin films. Part I: Processing. MRS Bull. 21(6), 21 (1996).

    Article  Google Scholar 

  3. N. Setter and R. Waser: Electroceramic materials. Acta Mater. 48, 151 (2000).

    Article  CAS  Google Scholar 

  4. Y. Luo, I. Szafraniak, N.D. Zakharov, V. Nagarajan, M. Steinhart, R.B. Wehrspohn, J.H. Wendorff, R. Ramesh, and M. Alexe: Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Appl. Phys. Lett. 83, 440 (2003).

    Article  CAS  Google Scholar 

  5. R.D. Morrison, L. Ramsay, and J.F. Scott: High Aspect ratio piezoelectric strontium-bismuth-tantalate nanotubes. J. Phys.-Condens. Matter 15, L527 (2003).

    Article  Google Scholar 

  6. V. Nagarajan, C.S. Ganpule, A. Stanishevsky, B.T. Liu, and R. Ramesh: Nanoscale phenomena in synthetic functional oxide heterostructures. Microsc. Microanal. 8, 333 (2002).

    Article  CAS  Google Scholar 

  7. V. Nagarajan, A.L. Roytburd, A. Stanishevsky, S. Prasertchoung, T. Zhou, L. Chen, J. Melngailis, O. Auciello, and R. Ramesh: Dynamics of ferroelastic domains in ferroelectric thin films. Nat. Mater. 2, 43 (2003).

    Article  CAS  Google Scholar 

  8. W.M. Moreau: Semiconductor Lithography: Principles and Materials (Plenum, New York, 1988).

    Book  Google Scholar 

  9. C.S. Ganpule, A. Stanishevsky, Q. Su, S. Aggarwal, J. Melngailis, E. Williams, and R. Ramesh: Scaling of ferroelectric properties in thin films. Appl. Phys. Lett. 75, 409 (1999).

    Article  CAS  Google Scholar 

  10. A.L. Roytburd, S.P. Alpay, V. Nagarajan, C.S. Ganpule, S. Aggarwal, E.D. Williams, and R. Ramesh: Measurement of internal stresses via the polarization in epitaxial ferroelectric thin films. Phys. Rev. Lett. 85, 190 (2000).

    Article  CAS  Google Scholar 

  11. Y.N. Xia and G.M. Whitesides: Soft lithography. Ann. Rev. Mater. Sci. 28, 153 (1998).

    Article  CAS  Google Scholar 

  12. D.A. Payne and P.G. Clem: Monolayer-mediated patterning of integrated electroceramics. J. Electroceram. 3, 163 (1999).

    Article  CAS  Google Scholar 

  13. P.M. Moran and F.F. Lange: Microscale lithography via channel stamping: Relationships between capillarity, channel filling and debonding. Appl. Phys. Lett. 74, 1332 (1999).

    Article  CAS  Google Scholar 

  14. N.P. Padture and X. Wei: Hyrothermal synthesis of thin films of barium titanate ceramic nanotubes at 200 °C. J. Am. Ceram. Soc. 86, 2215 (2003).

    Article  CAS  Google Scholar 

  15. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, and M. Aucouturier: Structure and physicochemistry of anodic oxide films on titatnium and TA6V alloy. Surf. Interf. Anal. 27, 629 (1999).

    Article  CAS  Google Scholar 

  16. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, and E.C. Dickey: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).

    Article  CAS  Google Scholar 

  17. D.E. Bornside, C.W. Macosko, and L.E. Scriven: On the modeling of spin coating. J. Imag. Technol. 13, 122 (1987).

    CAS  Google Scholar 

  18. R.K. Roeder and E.B. Slamovich: Stoichiometry control and phase selection in hydrothermally derived BaxSr(1−x)TiO3 powders. J. Am. Ceram. Soc. 82, 1665 (1999).

    Article  CAS  Google Scholar 

  19. X. Wei and N.P. Padture: Hydrothermal synthesis of tetragonal BaxSr(1−x)TiO3 powders. J. Ceram. Proc. Res. 5, 175 (2004).

    Google Scholar 

  20. M.M. Lencka and R.E. Riman: Hydrothermal synthesis of perovskite materials: Thermodynamic modeling and experimental verification. Ferroelectrics 151, 159 (1994).

    Article  CAS  Google Scholar 

  21. F. Jona, and G. Shirane: Ferroelectric Crystals (Dover Publications, New York, 1993).

    Google Scholar 

  22. A. Bendavid, P.J. Martin, and H. Takikawa: Deposition and modification of titanium dioxide thin films by filtered arc deposition. Thin Solid Films 360, 241 (2000).

    Article  CAS  Google Scholar 

  23. K.H. Hellwege and A.M. Hellwege: Landolt-Bornstein New Series: Group III, Volume 16, Oxides (Springer-Verlag, New York, 1981), p. 64.

    Google Scholar 

  24. H. Masuda and K. Fakuda: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).

    Article  CAS  Google Scholar 

  25. H. Masuda, H. Yamada, M. Satoh, and H. Asoh: Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71, 2770 (1997).

    Article  CAS  Google Scholar 

  26. A.P. Li, F. Muller, A. Birner, N. Kielsch, and U. Gosele: Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023 (1998).

    Article  CAS  Google Scholar 

  27. J. Li, C. Papadopoulos, and J.M. Xu: Highly-ordered carbon nanotube arrays for electronics applications. Appl. Phys. Lett. 75, 367 (1999).

    Article  CAS  Google Scholar 

  28. T. Kokubo, F. Miyaji, H-M. Kim, and T. Nakamura: Spontaneous formation of bonelike apatite on chemically treated metals. J. Am. Ceram. Soc. 79, 1127 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin P. Padture.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, X., Vasiliev, A.L. & Padture, N.P. Nanotubes patterned thin films of barium-strontium titanate. Journal of Materials Research 20, 2140–2147 (2005). https://doi.org/10.1557/JMR.2005.0264

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0264

Navigation