Skip to main content
Log in

Low loss dielectrics in Ba[(Mg1/3Ta2/3)1−xTix]O3 and Ba[(Mg1−xZnx)1/3Ta2/3]O3 systems

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The microwave dielectric properties of ceramics based on Ba[(Mg1/3Ta2/3)1−xTix]O3 (BMT-BT) and Ba[(Mg1−xZnx)1/3Ta2/3]O3 (BMT-BZT) were investigated as a function of composition x. In BMT-BT solid solution, the dielectric properties deteriorated with increasing concentration of Ti substitution at the B-site of BMT. A correlation was established between the quality factors of the solid solution phases and their tolerance factor. In BMT-BZT solid solution, where both the end compounds are ordered perovskites, the unit cell expands with increasing mole fraction of the Zn in Mg site of BMT while the dielectric constant increases monotonously from 24.8 (for BMT) to 29.7 (BZT). In BMT-BZT solid solution, the quality factor reaches a maximum (Qu·f = 109,900 GHz) for 60 mol/ of BZT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.T. Sebastian and N. McN Alford: List of microwave dielectric materials and their properties. (South Bank University, London, U.K.) http://www.lsbu.ac.uk/dielectric-materials/.

  2. T. Takahashi, E.J. Wu, A.V.D. Ven and G. Ceder: First-principles investigation of B-site ordering in Ba(MgxTa1-x)O3 microwave dielectrics with the complex perovskite structure. Jpn. J. Appl. Phys. 39, 1241 (2000).

    Article  CAS  Google Scholar 

  3. J.T. Wang and F. Tang: Effect of Ta-doping on dielectric properties of yPbMg1/3(Nb(1-x)Tax)2/3O3–(1 - y)PbTiO3Mater. Chem. Phys. 75, 86 (2002).

    Article  CAS  Google Scholar 

  4. J.S. Kim and N.K. Kim: Lead magnesium tantalate–lead titanate perovskite ceramic system: Preparation and characterization. Mater. Res. Bull. 35, 2479 (2000).

    Article  CAS  Google Scholar 

  5. L. Chai, M.A. Akbas and P.K. Davies Formation and characterisation of 1:1 ordered phases in AM4+O3-A(B2+1/3Ta5+2/3)O3 [A= Ba, Sr; B2+= Mg, Zn; M4+= Ti, Sn, Zr, Ce] perovskites, in Solid-State Chemistry of Inorganic Materials, edited by P.K. Davies, A.J. Jacobson, C.C. Torardi, and T.A. Vanderah (Mater. Res. Soc. Proc. 453, Pittsburgh, PA, 1997), p. 443.

    CAS  Google Scholar 

  6. M.C. Chae, S.M. Lim, N.K. Kim and B.O. Park: Perovskite formation and dielectric properties of Pb[(Mg1/3Ta2/3)0.8 (Zn1/3Ta2/3)0.2]O3 ceramics with Nb substitution for Ta. Mater. Res. Bull. 36, 2443 (2001).

    Article  CAS  Google Scholar 

  7. S.M. Lim and N.K. Kim: Crystallographic and dielectric aspects of Pb[(Mg,Zn)1/3Ta2/3]O3 system with 40 at.% Nb substitution. Mater. Res. Bull. 37, 59 (2002).

    Article  CAS  Google Scholar 

  8. Y.C. Zhang, J. Wang, Z.X. Yue, Z.L. Gui and L.T. Li: Effects of Mg2+ substitution on microstructure and microwave dielectric properties of (Zn1-xMgx)Nb2O6 ceramics Ceram. Int. 30, 87 (2004).

    Article  CAS  Google Scholar 

  9. A. Yoshida, H. Ogawa, A. Kan, S. Ishihara and Y. Higashida: Influence of Zn and Ni substitutions for Mg on dielectric properties of (Mg4-xMx)(Nb2-ySby)O9 (M= Zn and Ni) solid solutions J. Eur. Ceram. Soc. 24, 1765 (2004).

    Article  CAS  Google Scholar 

  10. S. Nomura: Ceramics for microwave dielectric resonators. Ferroelectrics 49, 61 (1983).

    Article  CAS  Google Scholar 

  11. H. Vincent, C. Perrier, P. L’Heritier and M. Labeyrier: Crystallographic study, by Rietveld’s method, of barium–magnesium–tantalum oxides based ceramics for use as dielectric resonator. X-ray dilatometry at low temperature. Mater. Res. Bull. 28, 951 (1993).

    Article  CAS  Google Scholar 

  12. A.J. Jacobson, B.M. Collins and B.E.F. Fender: A powder neutron and x-ray diffraction determination of the structure of Ba3Ta2ZnO9: An investigation of perovskite phases in the system Ba–Ta–Zn–O and the preparation of Ba2TaCdO5.5 and Ba2CeInO5.5. Acta Crystallogr. B32, 1083 (1976).

    Article  CAS  Google Scholar 

  13. H. Ohuchi, M. Okajima and H. Ito Effect of sintering on the dielectric properties of Ba(Zn1/3Ta2/3)O3–Ba(Mg1/3Ta2/3)O3 ceramics, inProc. Electroceramics V, Vol. 1, edited by J.L. Baptista, J.A. Labrincha, and P.M.L.S. Vilarinho (Aveiro, Portugal, 1996), pp. 549–552.

    Google Scholar 

  14. M. Thirumal, I.N. Jawahar, K.P. Surendran, P. Mohanan and A.K. Ganguly: Synthesis and microwave dielectric properties of Sr3Zn1-xMgxNb2O9 phases. Mater. Res. Bull. 37, 2321 (2002).

    Article  CAS  Google Scholar 

  15. B.W. Hakki and P.D. Coleman: A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microw. Theory Tech. MTT-8, 402 (1960).

    Google Scholar 

  16. W.E. Courtney: Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. IEEE Trans. Microwave Theory Tech. MTT 18, 476 (1970).

    Article  Google Scholar 

  17. J. Krupka, K. Derzakowski, B. Riddle and J. Baker-Jarvis: A dielectric resonator for measurements of complex permittivity of low loss dielectric materials as function of temperature. Meas. Sci. Technol. 9, 1751 (1998).

    Article  CAS  Google Scholar 

  18. S.J. Penn and N. Alford McN Reduction of dielectric loss by attention to processing and microstructure, EPSRC Final Report (EEIE, South Bank University, London, U.K., 2000).

    Google Scholar 

  19. Physcience Oplolectronic Co. Ltd., Beijing, http://www.physoe.com/english/e-010206-BaTiO3/e-010206.html.

  20. S. Janaswamy, G.S. Murthy, E.D. Dias and V.R.K. Murthy: Structural analysis of Ba(Mg1/3(Ta,Nb)2/3)O3 ceramics. Mater. Lett. 55, 414 (2002).

    Article  CAS  Google Scholar 

  21. M.W. Lufaso: Crystal structures, modeling, and dielectric property relationships of 2:1 ordered Ba3MM’2O9 (M = Mg, Ni, Zn; M’ = Nb, Ta) perovskites. Chem. Mater. 16, 2148 (2004).

    Article  CAS  Google Scholar 

  22. L. Chai, M.A. Akbas, P.K. Davies and J.B. Parise: Cation ordering transformations in Ba(Mg1/3Ta2/3)O3–BaZrO3 perovskite solid solutions. Mater. Res. Bull. 32, 1261 (1997).

    Article  CAS  Google Scholar 

  23. L. Chai and P.K. Davies: Effect of M4+ (Ce, Sn, Ti) B-site substitutions on the cation ordering in Ba(Mg1/3Ta2/3)O3. Mater. Res. Bull. 33, 1283 (1998).

    Article  CAS  Google Scholar 

  24. T. Hamano, D.J. Towner and B.W. Wessels: Relative dielectric constant of epitaxial BaTiO3 thin films in the GHz frequency range. Appl. Phys. Lett. 83, 5274 (2003).

    Article  CAS  Google Scholar 

  25. J. Mollá, M. González, R. Vila and A. Ibarra: Effect of humidity on microwave dielectric losses of porous alumina. J. Appl. Phys. 85, 1727 (1999).

    Article  Google Scholar 

  26. S.K. Pokkuluri Effect of admixtures, chlorides, and moisture on dielectric properties of Portland cement concrete in the low microwave frequency range. M.S. Thesis, Virginia Polytechnic Institute, Blacksburg, VA (1998).

    Google Scholar 

  27. E. Andronescu, A. Folea, and A. Rahaianu: Dielectric ceramics based on (1 - x)BaTiO3xBaMg0.33M0.67O3, in Proc. 4th International Conference on Electronic Ceramics Application, Electroceramics–IV, edited by R. Waser (Verlag der Augustinus Buchhandl, Aachen, Germany, 1994), p. 73.

  28. C.H. Choi, S. Nahm and Y.W. Song: Effect of TiO2 and SnO2 on the microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 ceramics. J. Kor. Phys. Soc. 35, S410 (1999).

    CAS  Google Scholar 

  29. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751 (1976).

    Article  CAS  Google Scholar 

  30. T. Takahashi: First-principles investigation of the phase stability for Ba(B1/32+B2/3?5+)O3 microwave dielectrics with the complex perovskite structure. Jpn. J. Appl. Phys. 39, 5637 (2000).

    Article  CAS  Google Scholar 

  31. S. Nomura, K. Toyama and K. Kaneta: Ba(Mg1/3Ta2/3)O3 ceramics with temperature-stable high-dielectric constant and low microwave loss. Jpn. J. Appl. Phys. 21, L624 (1982).

    Article  Google Scholar 

  32. S. Kawashima, M. Nishida, I. Ueda, H. Ouchi, and S. Hayakawa: Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies, Proc. of the 1st Meeting on Ferroelectric Materials and Their Applications, edited by O. Omato and A. Kunada, (Keihin Printing Co. Ltd., Kyoto, Japan, 1977), p. 293.

  33. F.S. Galasso: Structure, Properties and Preparation of Perovskite type Compounds (Pergamon Press, Oxford, U.K., 1969).

    Google Scholar 

  34. T. Shimada: Far-infrared reflection and microwave properties of Ba([Mg1-xZnx]1/3,Ta2/3)O3 ceramics. J. Eur. Ceram. Soc. 24, 1799 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mailadil Thomas Sebastian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surendran, K.P., Sebastian, M.T. Low loss dielectrics in Ba[(Mg1/3Ta2/3)1−xTix]O3 and Ba[(Mg1−xZnx)1/3Ta2/3]O3 systems. Journal of Materials Research 20, 2919–2926 (2005). https://doi.org/10.1557/JMR.2005.0384

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0384

Navigation