Skip to main content
Log in

Selective growth and kinetic study of copper oxide nanowires from patterned thin-film multilayer structures

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Selective growth of CuO nanowires on the etched face of Al2O3/Cu/Al2O3 thin-film multilayer patterns was achieved by ambient oxidation at 400 °C. The nanowires were observed to selectively grow only from the pattern edge with diameter limited by the thickness of Cu thin film. Transmission-electron-microscopy (TEM) characterization confirmed CuO nanowires of a monoclinic CuO growing in the [010] crystallographic direction. Nanowire growth kinetics was studied at 400 °C for different cumulative growth durations with initial growth rates of ∼1 nm/min. A base growth mechanism with kinetics limited by oxygen diffusion through defects of a scaling oxide film is consistent with observed kinetics. The oxygen diffusivity is found to be ∼10−11 cm2/s, consistent with the grain-boundary diffusion of oxygen through polycrystalline copper oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Schematic 1
FIG. 1
FIG. 2
FIG. 3
FIG. 4
TABLE I.
FIG. 5
FIG. 6
Schematic 2.
FIG. 7
FIG. 8
TABLE II.

Similar content being viewed by others

References

  1. D.H. Zhang, Z.Q. Liu, C. Li, T. Tang, X.L. Liu, S. Han, B. Lei C.W. Zhou: Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4(10), 1919 2004

    Article  CAS  Google Scholar 

  2. S.H. Jo, D. Banerjee Z.F. Ren: Field emission of zinc oxide nanowires grown on carbon cloth. Appl. Phys. Lett. 85(8), 1405 2004

    Article  CAS  Google Scholar 

  3. Z.H. Zhong, D.L. Wang, Y. Cui, M.W. Bockrath C.M. Lieber: Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302, 1377 2003

    Article  CAS  Google Scholar 

  4. M.G. Ancona, S.E. Kooi, W. Kruppa, A.W. Snow, E.E. Foos, L.J. Whitman, D. Park L. Shirey: Patterning of narrow Au nanocluster lines using V2O5 nanowire masks and ion beam milling. Nano Lett. 3(2), 135 2003

    Article  CAS  Google Scholar 

  5. Y. Cui, L.J. Lauhon, M.S. Gudiksen, J.F. Wang C.M. Lieber: Diameter-controlled synthesis of single crystal silicon nanowires. Appl. Phys. Lett. 78(15), 2214 2001

    Article  CAS  Google Scholar 

  6. C.L. Cheung, A. Kurtz, H. Park C.M. Lieber: Diameter controlled synthesis of carbon nanotubes. J. Phys. Chem. B 106, 2429 2002

    Article  CAS  Google Scholar 

  7. T.E. Bogart, S. Dey, K.K. Lew, S.E. Mohney J.M. Redwing: Diameter controlled synthesis of silicon nanowires using nanoporous alumina membranes. Adv. Mater. 17(1), 114 2005

    Article  CAS  Google Scholar 

  8. N. Chopra, P.D. Kichambare, R. Andrews B.J. Hinds: Control of multiwalled carbon nanotube diameter by selective growth on the exposed edge of a thin film multilayer structure. Nano Lett. 2(10), 1177 2002

    Article  CAS  Google Scholar 

  9. N.R. Franklin H. Dai: An enhanced CVD approach to extensive nanotube networks with directionality. Adv. Mater. 12(12), 890 2000

    Article  CAS  Google Scholar 

  10. S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell H.J. Dai: Self-oriented regular arrays of carbon nanotubes and their field-emission properties. Science 283, 512 1999

    Article  CAS  Google Scholar 

  11. Z.H. Zhong, D.L. Wang, Y. Cui, M.W. Bockrath C.M. Lieber: Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302, 1377 2003

    Article  CAS  Google Scholar 

  12. M.S. Islam, S. Sharma, T.I. Kamins R.S. Williams: Ultrahigh density silicon nanobridges formed between two vertical silicon surfaces. Nanotechnology 15, L5 2004

    Article  CAS  Google Scholar 

  13. K. Haraguchi, K. Hiruma, T. Katsuyama, K. Tominaga, M. Shirai T. Shimada: Self organized fabrication of planar GaAs nanowhisker arrays. Appl. Phys. Lett. 69(3), 386 1995

    Article  Google Scholar 

  14. J. Lefebvre, M. Radosavljevic A.T. Johnson: Fabrication of nanometer size gaps in a metallic wire. Appl. Phys. Lett. 76, 3828 2000

    Article  CAS  Google Scholar 

  15. N. Chopra, W.T. Xu, L.E. De Long B.J. Hinds: Suspended carbon nanotube shadow lithography: Incident evaporation angle dependence in Nontraditional Approaches to Patterning edited by S. Yang, Y. Xia, J. Liu, and C.D.E. Lakeman Mater. Res. Soc. Symp. Proc. EXS-2 Warrendale, PA 2003 M5.4

    Google Scholar 

  16. N. Chopra, W.T. Xu, L.E. De Long B.J. Hinds: Incident angle dependence of nanogap size in suspended carbon nanotube shadow lithography. Nanotechnology 16, 133 2005

    Article  CAS  Google Scholar 

  17. Z.R. Dai, Z.W. Pan Z.L. Wang: Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 13(1), 9 2003

    Article  Google Scholar 

  18. C.H. Xu, C.H. Woo S.Q. Shi: Formation of CuO nanowires on Cu foil. Chem. Phys. Lett. 399, 62 2004

    Article  CAS  Google Scholar 

  19. J.B. Reitz E.I. Solomon: Propylene oxidation on copper oxide surface: electronic and geometric contributions to reactivity and selectivity. J. Am. Chem. Soc. 120, 11467 1998

    Article  CAS  Google Scholar 

  20. M. Miyayama, K. Hikita, G. Uozumi H. Yanagida: A.C. impedance analysis of gas sensing property in CuO/ZnO heterocontacts. Sens. Actuators, B 24–25, 383 1995

    Article  Google Scholar 

  21. A.O. Musa, T. Akomolafe M.J. Carter: Production of cuprous oxide, a solar cell material by thermal oxidation and a study of its physical and electrical properties. Sol. Energy Mater. Sol. Cells 51, 305 1998

    Article  CAS  Google Scholar 

  22. S.I. Ali G.C. Wood: The influence of crystallographic orientation on the oxidation of Cu. Corros. Sci. 8, 413 1968

    Article  CAS  Google Scholar 

  23. C. Kaito, Y. Nakata, Y. Saito, T. Naiki K. Fujita: Electron microscope studies on structures and reduction process of copper oxide whiskers. J. Cryst. Growth 74, 469 1986

    Article  CAS  Google Scholar 

  24. E.A. Gulbransen, T.P. Copan K.F. Andrew: Oxidation of copper between 250° and 450° C and the growth of CuO whiskers. J. Electrochem. Soc. 108(2), 119 1960

    Article  Google Scholar 

  25. W.R. Lasko W.K. Tice: Determination of the surface population of copper oxide whiskers by electron-microscopy techniques. Anal. Chem. 34(13), 1795 1962

    Article  CAS  Google Scholar 

  26. T. Homma S. Issiki: Role of oxide whisker growth in the oxidation kinetics of pure copper. Acta Metall. 12, 1092 1964

    Article  CAS  Google Scholar 

  27. W.Z. Wang, G.H. Wang, X.S. Wang, Y.J. Zhan, Y.K. Liu C.L. Zheng: Synthesis and characterization of Cu2O nanowires by novel reduction route. Adv. Mater. 14(1), 67 2002

    Article  CAS  Google Scholar 

  28. C.T. Hsieh, J.M. Chen, H.H. Lin H.C. Shih: Synthesis of well ordered CuO nanofibers by a self-catalytic growth mechanism. Appl. Phys. Lett. 82(19), 3316 2003

    Article  CAS  Google Scholar 

  29. K. Jiang, T. Herricks Y. Xia: CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2(12), 1333 2002

    Article  CAS  Google Scholar 

  30. L.S. Huang, S.G. Yang, T. Li, B.X. Gu, Y.W. Du, Y.N. Lu S.Z. Shi: Preparation of large scale cupric oxide nanowires by thermal evaporation method. J. Cryst. Growth 260, 130 2004

    Article  CAS  Google Scholar 

  31. S. Wang: Thermal oxidation of Cu2S nanowires: A template method for the fabrication of mesoscopic CuxO (x = 1, 2) wires. Phys. Chem. Chem. Phys. 4, 3425 2002

    Article  CAS  Google Scholar 

  32. A. Kumar, A.K. Srivastava, P. Tiwari R.V. Nandedkar: The effect of growth parameters on the aspect ratio and number density of CuO nanorods. J. Phys.: Condens. Matter 16, 8531 2004

    CAS  Google Scholar 

  33. S.S. Brenner G.W. Sears: Mechanism for whisker growth. III. Nature of growth sites. Acta Metall. 4, 268 1956

    Article  CAS  Google Scholar 

  34. Y.J. Hsu S.Y. Lu: Vapor-solid growth of Sn nanowires: Growth mechanism and superconductivity. J. Phys. Chem. B 109, 4398 2005

    Article  CAS  Google Scholar 

  35. S. Vaddiraju, H. Chandrashekharan M.K. Sunkara: Vapor phase synthesis of tungsten nanowires. J. Am. Chem. Soc. 125, 10792 2003

    Article  CAS  Google Scholar 

  36. G. Gu, B. Zheng, W.Q. Han, S. Roth J. Liu: Tungsten oxide nanowires on tungsten substrates. Nano Lett. 2(8), 849 2002

    Article  CAS  Google Scholar 

  37. N. Chopra B.J. Hinds: Catalytic size control of multiwalled carbon nanotube diameter in xylene chemical vapor deposition process. Inorg. Chim. Acta 357(13), 3920 2004

    Article  CAS  Google Scholar 

  38. J. Echigoya, K. Mumtaz, Y. Hayasaka E. Aoyagi: Electron microscopic study of sputter-deposited Ir films. J. Mater. Sci. 39, 6215 2004

    Article  CAS  Google Scholar 

  39. G.R. Wallwork W.W. Smeltzer: The oxide scale on Cu in the temperature range 300–600° C. Corros. Sci. 9, 561 1969

    Article  CAS  Google Scholar 

  40. H. Busch, A. Fink, A. Muller K. Samwer: Occurrence and origin of copper oxide particulates prior to the deposition of YBaCuO thin films. Superconduct. Sci. Technol. 5, 624 1992

    Article  CAS  Google Scholar 

  41. J.K. Lumpp, U. Balchandran, J.T. Dusek, K.C. Goretta M.T. Lanagan: Mechanical properties of CuO. High Temp. Mater. Processes 9(1), 1 1990

    Article  CAS  Google Scholar 

  42. K. Develos-Bagarinao, H. Yamasaki, Y. Nakagawa K. Endo: Pore formation in YBCO films deposited by a large-area pulsed laser deposition system. Supercond. Sci. Technol. 17, 1253 2004

    Article  CAS  Google Scholar 

  43. R.E. Williford, R.S. Addleman, X.S. Li, T.S. Zemanian, J.C. Birnbaum G.E. Fryxell: Pore shape evolution in mesoporous silica thin films: From circular to elliptical to rectangular. J. Non-Cryst. Solids 351, 2217 2005

    Article  CAS  Google Scholar 

  44. Y.-S. Suh, D.-G. Park S.-A. Jang: Investigation of stress behaviors and mechanism of void formation in sputtered TiSix films. Thin Solid Films 450, 341 2004

    Article  CAS  Google Scholar 

  45. K. Hauffe: Oxidation of Metals Plenum Press New York 1965 159

    Google Scholar 

  46. M. O’Reilly, X. Jiang, J.T. Beechinor, S. Lynch, C.N. Nidheasuna, J.C. Patterson G.M. Crean: Investigation of oxidation behavior of thin film and bulk copper. Appl. Surf. Sci. 91, 152 1995

    Article  Google Scholar 

  47. Y. Zhu, K. Mimura M. Isshiki: Influence of oxide grain morphology on formation of the CuO scale during oxidation of copper at 600–1000 °C. Corros. Sci. 47, 534 2005

    Article  CAS  Google Scholar 

  48. F. Perinet, S. Barbezat J. Philibert: Mechanism of oxygen self diffusion in Cu2O. Mater. Sci. Monogr. 10, 234 1982

    CAS  Google Scholar 

  49. J.A. Rebane, N.V. Yakovlev, D.S. Chicherin, Y.D. Tretyakov, L.I. Leonyuk V.G. Yakunin: An experimental study of copper self diffusion in CuO, Y2Cu2O5, and YBa2Cu3O7−x by secondary neutral mass spectroscopy. J. Mater. Chem. 7(10), 2085 1997

    Article  CAS  Google Scholar 

  50. Y. Oishi W.D. Kingery: Self diffusion of oxygen in single crystal and polycrystalline Al2O3. J. Chem. Phys. 33(3), 480 1960

    Article  CAS  Google Scholar 

  51. I. Kaur W. Gust: Handbook of Grain and Interphase Boundary Diffusion Data Ziegler Press Stuttgart 1989

    Google Scholar 

Download references

Acknowledgments

Support was provided by AFOSR under agreement number F49620-02-1-0225. The authors thank The Center of Nanoscale Science and Engineering (CeNSE) and The University of Kentucky Microscopy Center (Mr. L. Rice and Dr. A. Dozier) for providing critical equipment infrastructure. N. Chopra thanks Dr. M.K. Sunkara (University of Louisville) for his helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce J. Hinds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chopra, N., Hu, B. & Hinds, B.J. Selective growth and kinetic study of copper oxide nanowires from patterned thin-film multilayer structures. Journal of Materials Research 22, 2691–2699 (2007). https://doi.org/10.1557/JMR.2007.0377

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2007.0377

Navigation