Skip to main content
Log in

Annealing behavior of a ferritic stainless steel subjected to large-strain cold working

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Mechanisms of microstructure evolution during annealing after cold working were studied in an Fe-15%Cr ferritic stainless steel, which was processed by bar rolling/swaging to various total strains ranging from 1.0 to 7.3 at ambient temperature. Two types of recrystallization behavior were observed depending on the cold strain. An ordinary primary (discontinuous) recrystallization developed in the samples processed to conventional strains of 1.0–2.0. On the other hand, rapid recovery at early annealing resulted in ultrafine-grained microstructures in the larger strained samples that continuously coarsened on further annealing. Such annealing behavior was considered as continuous recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
TABLE I.

Similar content being viewed by others

References

  1. W.C. Leslie, J.T. Michalak, F.W. Aul: The annealing of cold-worked iron in Iron and Its Dilute Solid Solutions edited by C.W. Spencer and F.E. Werner Interscience Publishers New York 1963 119

    Google Scholar 

  2. R.W. Cahn: Annealing mechanisms in Recrystallization, Grain Growth and Textures ASM Metals Park, OH 1966 99

    Google Scholar 

  3. F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena Pergamon Press Oxford, UK 1996 173

    Google Scholar 

  4. E.S. Meieran, D.A. Thomas: Structure of drawn and annealed tungsten wire. Trans. AIME 233, 937 1965

    CAS  Google Scholar 

  5. A. Oscarsson, H-E. Ekstrom, B. Hutchinson: Transition from discontinuous to continuous recrystallization in strip-cast aluminium alloys. Mater. Sci. Forum 113–115, 177 1993

    Article  Google Scholar 

  6. Y. Kimura, S. Takaki: Microstructural changes during annealing of work-hardened mechanically milled metallic powders. Mater. Trans., JIM. 36, 289 1995

    Article  CAS  Google Scholar 

  7. K. Oh-ishi, Z. Horita, D.J. Smith, R.Z. Valiev, M. Nemoto, T.G. Langdon: Fabrication and thermal stability of a nanocrystalline Ni-Al-Cr alloy: Comparison with pure Cu and Ni. J. Mater. Res. 14, 4200 1999

    Article  CAS  Google Scholar 

  8. F.J. Humphreys, P.B. Prangnell, R. Priestner: Fine-grained alloys by thermomechanical processing in Recrystallization and Related Phenomena edited by T. Sakai and H.G. Suzuki Japan Institute of Metals Sendai, Japan 1999 69

    Google Scholar 

  9. M. Umemoto, Z.G. Liu, K. Masuyama, X.J. Hao, K. Tsuchiya: Nanostructured Fe-C alloys produced by ball milling. Scripta Mater. 44, 1741 2001

    Article  CAS  Google Scholar 

  10. A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, K. Tsuzaki: Continuous recrystallization in austenitic stainless steel after large strain deformation. Acta Mater. 50, 1547 2002

    Article  CAS  Google Scholar 

  11. Y. Wang, M. Chen, F. Zhou, E. Ma: High tensile ductility in a nanostructured metal. Nature 419, 912 2002

    Article  CAS  Google Scholar 

  12. Yu. Ivanisenko, R.K. Wunderlich, R.Z. Valiev, H-J. Fecht: Annealing behaviour of nanostructured carbon steel produced by severe plastic deformation. Scripta Mater. 49, 947 2003

    Article  CAS  Google Scholar 

  13. L. Shaw, H. Luo, J. Villegas, D. Miracle: Thermal stability of nanostructured Al93Fe3Cr2Ti2 alloys prepared via mechanical alloying. Acta Mater. 51, 2647 2003

    Article  CAS  Google Scholar 

  14. H. Mughrabi, H.W. Hoppel, M. Kautz, R.Z. Valiev: Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation. Z. Metallkd. 94, 1079 2003

    Article  CAS  Google Scholar 

  15. Y.H. Zhao, X.Z. Liao, Y.T. Zhu, R.Z. Valiev: Enhanced mechanical properties in ultrafine grained 7075 Al alloy. J. Mater. Res. 20, 288 2005

    Article  CAS  Google Scholar 

  16. N. Kamikawa, N. Tsuji, X. Huang, N. Hansen: Quantification of annealed microstructures in ARB processed aluminum. Acta Mater. 54, 3055 2006

    Article  CAS  Google Scholar 

  17. Y. Chino, T. Hoshika, J.S. Lee, M. Mabuchi: Mechanical properties of AZ31 Mg alloy recycled by severe deformation. J. Mater. Res. 21, 754 2006

    Article  CAS  Google Scholar 

  18. F.J. Humphreys: A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures: I. The basic model. Acta Mater. 45, 4231 1997

    Article  CAS  Google Scholar 

  19. M.V. Degtyarev, L.M. Voronova, V.V. Gubernatorov, T.I. Chashchukhina: On the thermal stability of the microcrystalline structure in single-phase metallic materials. Dokl. Phys. 47, 647 2002

    Article  CAS  Google Scholar 

  20. P.B. Prangnell, J.S. Hayes, J.R. Bowen, P.J. Apps, P.S. Bate: Continuous recrystallization of lamellar deformation structures produced by severe deformation. Acta Mater. 52, 3193 2004

    Article  CAS  Google Scholar 

  21. A. Belyakov, T. Sakai, H. Miura: Fine-grained structure formation in austenitic stainless steel under multiple deformation at 0.5 Tm. Mater. Trans., JIM 41, 476 2000

    Article  CAS  Google Scholar 

  22. A. Belyakov, T. Sakai, H. Miura, K. Tsuzaki: Grain refinement in Cu under large strain deformation. Philos. Mag. A 81, 2629 2001

    Article  CAS  Google Scholar 

  23. A. Belyakov, Y. Kimura, Y. Adachi, K. Tsuzaki: Microstructure evolution in ferritic stainless steels during large strain deformation. Mater. Trans. 45, 2812 2004

    Article  CAS  Google Scholar 

  24. V.Y. Gertsman, R. Berringer, R.Z. Valiev, H. Gleiter: On the structure and strength of ultrafine-grained copper produced by severe plastic deformation. Scripta Metall. 30, 229 1994

    Article  CAS  Google Scholar 

  25. A. Belyakov, Y. Kimura, K. Tsuzaki: Recovery and recrystallization in ferritic stainless steel after large strain deformation. Mater. Sci. Eng., A 403, 249 2005

    Article  Google Scholar 

  26. A. Belyakov, Y. Kimura, K. Tsuzaki: On structural mechanism of continuous recrystallization in ferritic stainless steel after large strain processing. Mater. Sci. Forum 503–504, 323 2006

    Article  Google Scholar 

  27. A. Belyakov, K. Tsuzaki, Y. Kimura, Y. Kimura, Y. Mishima: Comparative study on microstructure evolution upon unidirectional and multidirectional cold working in an Fe-15%Cr ferritic alloy. Mater. Sci. Eng., A 456, 323 2007

    Article  Google Scholar 

  28. G. Wiener: Grain growth in high purity iron. Trans. ASM 44, 1169 1952

    Google Scholar 

  29. W.B. Hutchinson: Development of textures in recrystallization. Metal Sci. 8, 185 1974

    Article  CAS  Google Scholar 

  30. B.J. Duggan, H. Ning, L.X. Zhang: Recrystallization texture development in cold rolled Fe-0.003C in Thermomechanical Processing of Steels and Other Materials edited by T. Chandra and T. Sakai TMS Warrendale, Pennsylvania 1997 2305

    Google Scholar 

  31. M. Sanchez-Araiza, S. Godet, P.J. Jacques, J.J. Jonas: Texture evolution during the recrystallization of a warm-rolled low-carbon steel. Acta Mater. 54, 3085 2006

    Article  CAS  Google Scholar 

  32. J.E. Burke: Some factors affecting the rate of grain growth in metals. Trans. AIME 180, 73 1949

    Google Scholar 

  33. E. Hornbogen, U. Koster: Recrystallization of two-phase alloys in Recrystallization of Metallic Materials edited by F. Haessner Verlag Stuttgart, Germany 1978 159

    Google Scholar 

  34. R. Drouard, J. Washburn, E.R. Parker: Recovery in single crystals of zinc. Trans. AIME 197, 1226 1953

    Google Scholar 

  35. J.T. Michalak, H.W. Paxton: Some recovery characteristics of zone-melted iron. Trans. AIME 221, 850 1961

    CAS  Google Scholar 

  36. J. Lian, R.Z. Valiev, B. Baudelet: On the enhanced grain growth in ultrafine grained metals. Acta Metall. Mater. 43, 4165 1995

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the Special Coordination Funds of the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government. The authors are grateful to Ms. J. Hono, National Institute for Materials Science, for improving the language of the article. One of the authors (A. Belyakov) would like to express his thanks to the National Institute for Materials Science for providing a scientific fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Belyakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyakov, A., Tsuzaki, K., Kimura, Y. et al. Annealing behavior of a ferritic stainless steel subjected to large-strain cold working. Journal of Materials Research 22, 3042–3051 (2007). https://doi.org/10.1557/JMR.2007.0398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2007.0398

Navigation