Skip to main content
Log in

Microstructural evolution during the heat treatment of nanocrystalline alloys

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocrystalline alloys often show exceptional thermal stability as a consequence of kinetic and thermodynamic impediments to grain growth. However, evaluating the various contributions to stability requires detailed investigation of the solute distribution, which is challenging within the fine structural-length-scales of nanocrystalline materials. In the present work, we use a variety of techniques to assess changes in the grain size, chemical ordering, grain-boundary segregation, and grain-boundary structure during the heat treatment of Ni–W specimens synthesized over a wide range of grain sizes from 3 to 70 nm. A schematic microstructural evolution map is also developed based on analytical models of the various processes activated during annealing, highlighting the effects of alloying in nanocrystalline materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
TABLE II.
FIG. 5
FIG. 6
FIG. 7
FIG. 8
TABLE III.
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. G. Hibbard, U. Erb, K.T. Aust, U. Klement G. Palumbo: Thermal stability of nanostructured electrodeposits. Mater. Sci. Forum 386–388, 387 2002

    Article  Google Scholar 

  2. G. Hibbard, K.T. Aust, G. Palumbo U. Erb: Thermal stability of electrodeposited nanocrystalline cobalt. Scripta Mater. 44, 513 2001

    Article  CAS  Google Scholar 

  3. M. da Silva U. Klement: A comparison of thermal stability in nanocrystalline Ni- and Co-based materials. Z. Metallkd. 96, 1009 2005

    Article  Google Scholar 

  4. U. Klement, U. Erb, A.M. ElSherik K.T. Aust: Thermal stability of nanocrystalline Ni. Mater. Sci. Eng., A 203, 177 1995

    Article  Google Scholar 

  5. T.R. Malow C.C. Koch: Thermal stability of nanocrystalline materials. Mater. Sci. Forum 225–227, 595 1996

    Article  Google Scholar 

  6. R. Birringer: Nanocrystalline materials. Mater. Sci. Eng., A 117, 33 1989

    Article  Google Scholar 

  7. D.S. Gianola, D.H. Warner, J.F. Molinari K.J. Hemker: Increased strain rate sensitivity due to stress-coupled grain growth in nanocrystalline Al. Scripta Mater. 55, 649 2006

    Article  CAS  Google Scholar 

  8. D.S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven K.J. Hemker: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 2006

    Article  CAS  Google Scholar 

  9. P.L. Gai, K. Zhang J. Weertman: Electron microscopy study of nanocrystalline copper deformed by a microhardness indenter. Scripta Mater. 56, 25 2007

    Article  CAS  Google Scholar 

  10. H. Gleiter: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 1989

    Article  CAS  Google Scholar 

  11. M.A. Meyers, A. Mishra D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 2006

    Article  CAS  Google Scholar 

  12. C.S. Tjong H. Chen: Nanocrystalline materials and coatings. Mater. Sci. Eng., R 45, 1 2004

    Article  CAS  Google Scholar 

  13. C. Suryanarayana C.C. Koch: Nanocrystalline materials-Current research and future directions. Hyperfine Interact. 130, 5 2000

    Article  CAS  Google Scholar 

  14. H. Gleiter: Nanostructured materials: State of the art and perspectives. Nanostruct. Mater. 6, 3 1995

    Article  CAS  Google Scholar 

  15. J.R. Weertman: Hall-Petch strengthening in nanocrystalline metals. Mater. Sci. Eng., A 166, 161 1993

    Article  Google Scholar 

  16. T. Volpp, E. Goring, W.M. Kuschke E. Arzt: Grain size determination and limits to Hall-Petch behavior in nanocrystalline NiAl powders. Nanostruct. Mater. 8, 855 1997

    Article  CAS  Google Scholar 

  17. B.S. Murty, M.K. Datta S.K. Pabi: Structure and thermal stability of nanocrystalline materials. Sadhana 28, 23 2003

    Article  CAS  Google Scholar 

  18. R.A. Varin E. Romanowska-Haftek: On the kinetics of the spreading of extrinsic grain-boundary dislocations. Metall. Trans. A 17, 1967 1986

    Article  Google Scholar 

  19. P.H. Pumphrey H. Gleiter: Annealing of dislocations in high-angle grain-boundaries. Philos. Mag. 30, 593 1974

    Article  CAS  Google Scholar 

  20. D. Jang M. Atzmon: Grain-boundary relaxation and its effect on plasticity in nanocrystalline Fe. J. Appl. Phys. 99, 083504 2006

    Article  CAS  Google Scholar 

  21. U. Klement, U. Erb K.T. Aust: Investigations of the grain growth behaviour of nanocrystalline nickel. Nanostruct. Mater. 6, 581 1995

    Article  Google Scholar 

  22. A. Tschope, R. Birringer H. Gleiter: Calorimetric measurements of the thermal relaxation in nanocrystalline platinum. J. Appl. Phys. 71, 5391 1992

    Article  Google Scholar 

  23. J. Eckert, J.C. Holzer, C.E. Krill W.L. Johnson: Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition. J. Mater. Res. 7, 1751 1992

    Article  CAS  Google Scholar 

  24. M.Y. Gutkin, I.A. Ovid’ko C.S. Pande: Yield stress of nanocrystalline materials: Role of grain-boundary dislocations, triple junctions and Coble creep. Philos. Mag. 84, 847 2004

    Article  CAS  Google Scholar 

  25. R.A. Masumura, P.M. Hazzledine C.S. Pande: Yield stress of fine grained materials. Acta Mater. 46, 4527 1998

    Article  CAS  Google Scholar 

  26. A. Hasnaoui, H. Van Swygenhoven P.M. Derlet: On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: A molecular-dynamics computer simulation. Acta Mater. 50, 3927 2002

    Article  CAS  Google Scholar 

  27. P.G. Sanders, G.E. Fougere, L.J. Thompson, J.A. Eastman J.R. Weertman: Improvements in the synthesis and compaction of nanocrystalline materials. Nanostruct. Mater. 8, 243 1997

    Article  CAS  Google Scholar 

  28. P.G. Sanders, C.J. Youngdahl J.R. Weertman: The strength of nanocrystalline metals with and without flaws. Mater. Sci. Eng. 234, 77 1997

    Article  Google Scholar 

  29. L.S. Shvindlerman G. Gottstein: Efficiency of drag mechanisms for inhibition of grain growth in nanocrystalline materials. Z. Metallkd. 95, 239 2004

    Article  CAS  Google Scholar 

  30. L.S. Shvindlerman G. Gottstein: Cornerstones of grain-structure evolution and stability: Vacancies, boundaries, triple junctions. J. Mater. Sci. 40, 819 2005

    Article  CAS  Google Scholar 

  31. A. Michels, C.E. Krill, H. Ehrhardt, R. Birringer D.T. Wu: Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials. Acta Mater. 47, 2143 1999

    Article  CAS  Google Scholar 

  32. D.L. Beke, C. Cserhati I.A. Szabo: Segregation inhibited grain coarsening in nanocrystalline alloys. J. Appl. Phys. 95, 4996 2004

    Article  CAS  Google Scholar 

  33. R. Kirchheim: Grain coarsening inhibited by solute segregation. Acta Mater. 50, 413 2002

    Article  CAS  Google Scholar 

  34. C.E. Krill, H. Ehrhardt R. Birringer: Thermodynamic stabilization of nanocrystallinity. Z. Metallkd. 96, 1134 2005

    Article  CAS  Google Scholar 

  35. F. Liu R. Kirchheim: Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J. Cryst. Growth 264, 385 2004

    Article  CAS  Google Scholar 

  36. J. Weissmuller: Alloy effects in nanostructures. Nanostruct. Mater. 3, 261 1993

    Article  Google Scholar 

  37. A.J. Detor C.A. Schuh: Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 55, 371 2007

    Article  CAS  Google Scholar 

  38. C.A. Schuh, T.G. Nieh H. Iwasaki: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51, 431 2003

    Article  CAS  Google Scholar 

  39. A.J. Detor, M.K. Miller C.A. Schuh: Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography. Philos. Mag. 86, 4459 2006

    Article  CAS  Google Scholar 

  40. T. Hentschel, D. Isheim, R. Kirchheim, F. Mueller H. Kreye: Nanocrystalline Ni-3.6 at.% P and its transformation sequence studied by atom-probe field-ion microscopy. Acta Mater. 48, 933 2000

    Article  CAS  Google Scholar 

  41. A.A. Talin, E.A. Marquis, S.H. Goods, J.J. Kelly M.K. Miller: Thermal stability of Ni-Mn electrodeposits. Acta Mater. 54, 1935 2006

    Article  CAS  Google Scholar 

  42. B. Farber, E. Cadel, A. Menand, G. Schmitz R. Kirchheim: Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe (TAP). Acta Mater. 48, 789 2000

    Article  CAS  Google Scholar 

  43. P. Choi, T. Al-Kassab, F. Gartner, H. Kreye R. Kirchheim: Thermal stability of nanocrystalline nickel-18 at.% tungsten alloy investigated with the tomographic atom probe. Mater. Sci. Eng., A 353, 74 2003

    Article  CAS  Google Scholar 

  44. P. Choi, M. Da Silva, U. Klement, T. Al-Kassab R. Kirchheim: Thermal stability of electrodeposited nanocrystalline Co-1.1at.%P. Acta Mater. 53, 4473 2005

    Article  CAS  Google Scholar 

  45. T. Kizuka, Y. Nakagami, T. Ohata, I. Kanazawa, H. Ichinose, H. Murakami Y. Ishida: Structure and thermal-stability of nanocrystalline silver studied by transmission electron-microscopy and positron-annihilation spectroscopy. Philos. Mag. A 69, 551 1994

    Article  CAS  Google Scholar 

  46. J. Kuriplach, S. van Petegem, M. Hou, E.E. Zhurkin, H. van Swygenhoven, F. Dalla Torre, G. van Tendeloo, M. Yandouzi, D. Schryvers, D. Segers, A.L. Morales, S. Ettaoussi C. Dauwe: Positron annihilation study of nanocrystalline Ni3Al: Simulations and measurements. Mater. Sci. Forum 363–3, 94 2001

    Article  Google Scholar 

  47. D. Segers, S. Van Petegem, J.F. Loffler, H. Van Swygenhoven, W. Wagner C. Dauwe: Positron annihilation study of nanocrystalline iron. Nanostruct. Mater. 12, 1059 1999

    Article  Google Scholar 

  48. H. Weigand, W. Sprengel, R. Rower, H.E. Schaefer, T. Wejrzanowski M. Kelsch: Interfacial free volumes and segregation effects in nanocrystalline Pd85Zr15 studied by positron annihilation. Appl. Phys. Lett. 84, 3370 2004

    Article  CAS  Google Scholar 

  49. J. Weertman P.G. Sanders: Plastic deformation of nanocrystalline metals. Solid State Phenomena 35–36, 249 1994

    Google Scholar 

  50. J. Eckert, J.C. Holzer W.L. Johnson: Thermal-stability and grain-growth behavior of mechanically alloyed nanocrystalline Fe-Cu alloys. J. Appl. Phys. 73, 131 1993

    Article  CAS  Google Scholar 

  51. K. Lu, W.D. Wei J.T. Wang: Grain-growth kinetics and interfacial energies in nanocrystalline Ni-P alloys. J. Appl. Phys. 69, 7345 1991

    Article  CAS  Google Scholar 

  52. F. Ebrahimi H.Q. Li: Grain growth in electrodeposited nanocrystalline fcc Ni-Fe alloys. Scripta Mater. 55, 263 2006

    Article  CAS  Google Scholar 

  53. K. Boylan, D. Ostrander, U. Erb, G. Palumbo K.T. Aust: In-situ TEM study of the thermal stability of nanocrystalline Ni-P. Scripta Metall. Mater. 25, 2711 1991

    Article  CAS  Google Scholar 

  54. T. Yamasaki, R. Tomohira, Y. Ogino, P. Schlossmacher K. Ehrlich: Formation of ductile amorphous and nanocrystalline Ni-W alloys by electrodeposition. Plat. Surf. Fin. 87, 148 2000

    CAS  Google Scholar 

  55. Z. Zhang, F. Zhou E.J. Lavernia: On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction. Metall. Mater. Trans. A 34, 1349 2003

    Article  Google Scholar 

  56. H.P. Klug L.E. Alexander: X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials Wiley New York 1974

    Google Scholar 

  57. B.D. Cullity: Elements of X-Ray Diffraction Addison-Wesley Publishing Company, Inc. Reading, MA 1978

    Google Scholar 

  58. A.J. Detor, M.K. Miller C.A. Schuh Measuring grain boundary segregation in nanocrystalline alloys: Direct validation of statistical techniques using atom probe tomography. Philos. Mag. Lett., 87, 581 2007

    Article  CAS  Google Scholar 

  59. A. Gabriel, H.L. Lukas, C.H. Allibert I. Ansara: Experimental and calculated phase diagrams of the Ni-W, Co-W, and Co-Ni-W systems. Z. Metallkd. 76, 589 1985

    CAS  Google Scholar 

  60. G.D. Hibbard, J.L. McCrea, G. Palumbo, K.T. Aust U. Erb: An initial analysis of mechanisms leading to late stage abnormal grain growth in nanocrystalline Ni. Scripta Mater. 47, 83 2002

    Article  CAS  Google Scholar 

  61. N.S. Mishra S. Ranganathan: Electron-microscopy and diffraction of ordering in an off-stoichiometric Ni-W alloy. Scripta Metall. Mater. 27, 1337 1992

    Article  CAS  Google Scholar 

  62. N.S. Mishra S. Ranganathan: Electron-microscopy and diffraction of ordering in Ni-W alloys. Acta Metall. Mater. 43, 2287 1995

    Article  CAS  Google Scholar 

  63. N.S. Mishra, C.D. Singh S. Ranganathan: Order hardening in nickel molybdenum and nickel tungsten alloys. J. Mater. Sci. 27, 1599 1992

    Article  CAS  Google Scholar 

  64. ASM Handbooks: Alloy Phase Diagrams, Vol. 3, ASM International Materials Park, OH 2003

  65. N.S. Mishra S. Ranganathan: Electron-microscopy and diffraction of ordering in a Ni-25wt%Mo alloy. Mater. Sci. Eng. 150, 75 1992

    Article  Google Scholar 

  66. J.E. Spruiell E.E. Stansbury: X-ray study of short-range order in nickel alloys containing 10.7 and 20.0 at.% molybdenum. J. Phys. Chem. Solids 26, 811 1965

    Article  CAS  Google Scholar 

  67. S.K. Das, P.R. Okamoto, P.M.J. Fisher G. Thomas: Short-range order in Ni-Mo, Au-Cr, Au-V and Au-Mn alloys. Acta Metall. Mater. 21, 913 1973

    Article  CAS  Google Scholar 

  68. P.R. Okamoto G. Thomas: On short range order and micro-domains in the Ni4Mo system. Acta Metall. Mater. 19, 825 1971

    Article  CAS  Google Scholar 

  69. W.M. Stobbs S.H. Stobbs: Short-range order in (1-1/2-0) special-point alloys. Philos. Mag. B 53, 537 1986

    Article  CAS  Google Scholar 

  70. S.Q. Cao, C.R. Brooks L. Allard: In-situ transmission electron-microscopy study of ordering in a splat-cooled Ni-20 at-percent mo alloy. Mater Charact. 34, 87 1995

    Article  CAS  Google Scholar 

  71. U.D. Kulkarni: Monte Carlo simulation of ordering transformations in Ni-Mo-based alloys. Acta Mater. 52, 2721 2004

    Article  CAS  Google Scholar 

  72. A. Arya, S. Banerjee, G.P. Das, I. Dasgupta, T. Saha-Dasgupta A. Mookerjee: A first-principles thermodynamic approach to ordering in Ni-Mo alloys. Acta Mater. 49, 3575 2001

    Article  CAS  Google Scholar 

  73. S. Hata, H. Fujita, C.G. Schlesier, S. Matsumura, N. Kuwano K. Oki: Monte Carlo study of ordering processes in fcc-based Ni-Mo alloys. Mater Trans., JIM 39, 133 1998

    Article  CAS  Google Scholar 

  74. M. Kumar V.K. Vasudevan: Ordering reactions in an Ni-25Mo-8Cr alloy. Acta Mater. 44, 1591 1996

    Article  CAS  Google Scholar 

  75. E. Raub K. Muller: Fundamentals of Metal Deposition Elsevier Publishing Company New York 1967

    Google Scholar 

  76. D. Farkas H. Jang: Grain-boundary ordering, segregation, and melting transitions in a two-dimensional lattice-gas model. Phys. Rev. 39, 11769 1989

    Article  CAS  Google Scholar 

  77. A.J. Detor C.A. Schuh: Grain boundary segregation, chemical ordering, and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni-W system. Acta Mater. 55, 4221 2007

    Article  CAS  Google Scholar 

  78. G. Palumbo, S.J. Thorpe K.T. Aust: On the contribution of triple junctions to the structure and properties of nanocrystalline materials. Scripta Metall. Mater. 24, 1347 1990

    Article  CAS  Google Scholar 

  79. A.P. Sutton R.W. Balluffi: Interfaces in Crystalline Materials Oxford University Press New York 1995

    Google Scholar 

  80. R.G. Forbes: Field evaporation theory: A review of basic ideas. Appl. Surf. Sci. 87–88, 1 1995

    Article  Google Scholar 

  81. M. Abraham, P. Holdway, M. Thuvander, A. Cerezo G.D.W. Smith: Thermal stability of electrodeposited nanocrystalline nickel. Surf Eng. 18, 151 2002

    Article  CAS  Google Scholar 

  82. M.K. Miller: Three-dimensional atom probes. J. Microsc. 186, 1 1997

    Article  CAS  Google Scholar 

  83. M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman G. Gottstein: Vacancy generation during grain boundary migration. Interface Sci. 6, 287 1998

    CAS  Google Scholar 

  84. Y. Estrin, G. Gottstein L.S. Shvindlerman: Thermodynamic effects on the kinetics of vacancy-generating processes. Acta Mater. 47, 3541 1999

    Article  CAS  Google Scholar 

  85. X. Tingdong C. Buyuan: Kinetics of non-equilibrium grain-boundary segregation. Prog. Mater. Sci. 49, 109 2004

    Article  CAS  Google Scholar 

  86. J.E. Burke: Some factors affecting the rate of grain growth in metals. Trans. Metall. Soc. AIME 180, 73 1949

    Google Scholar 

  87. J.E. Burke D. Turnbull: Recrystallization and grain growth. Prog. Metal. Phys. 3, 220 1952

    Article  CAS  Google Scholar 

  88. F.J. Humphreys M. Hatherly: Recrystallization and Related Annealing Phenomena Elsevier Boston, MA 2004

    Google Scholar 

  89. A.A. Nazarov: Kinetics of grain boundary recovery in deformed polycrystals. Interface Sci. 8, 315 2000

    Article  CAS  Google Scholar 

  90. A.M. Brown M.F. Ashby: Correlations for diffusion constants. Acta Metall. Mater. 28, 1085 1980

    Article  CAS  Google Scholar 

  91. Smithells Metals Reference Book, edited by W.F. Gale and T.C. Totemeier Elsevier Butterworth-Heinemann Oxford 2004

    Google Scholar 

  92. P.C. Millett, R.P. Selvam A. Saxena: Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants. Acta Mater. 54, 297 2006

    Article  CAS  Google Scholar 

  93. P.C. Millett, R.P. Selvan, S. Bansal A. Saxena: Atomistic simulation of grain boundary energetics: Effects of dopants. Acta Mater. 53, 3671 2005

    Article  CAS  Google Scholar 

  94. F. Liu R. Kirchheim: Comparison between kinetic and thermodynamic effects on grain growth. Thin Solid Films 466, 108 2004

    Article  CAS  Google Scholar 

  95. M.P. Seah: Grain boundary segregation. J. Phys. F 10, 1043 1980

    Article  CAS  Google Scholar 

  96. D. McLean: Grain Boundaries in Metals Clarendon Press Oxford 1957

    Google Scholar 

  97. Y. Mishin C. Herzig: Diffusion in fine-grained materials: Theoretical aspects and experimental possibilities. Nanostruct. Mater. 6, 859 1995

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported by the United States Army Research Office under contract DAAD19-03-1-0235.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.A. Schuh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detor, A., Schuh, C. Microstructural evolution during the heat treatment of nanocrystalline alloys. Journal of Materials Research 22, 3233–3248 (2007). https://doi.org/10.1557/JMR.2007.0403

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2007.0403

Navigation