Skip to main content
Log in

Growth and characterization of TiN/SiN(001) superlattice films

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report the layer structure and composition in recently discovered TiN/SiN(001) superlattices deposited by dual-reactive magnetron sputtering on MgO(001) substrates. High-resolution transmission electron microscopy combined with Z-contrast scanning transmission electron microscopy, x-ray reflection, diffraction, and reciprocal-space mapping shows the formation of high-quality superlattices with coherently strained cubic TiN and SiN layers for SiN thickness below 7–10 Å. For increasing SiN layer thicknesses, a transformation from epitaxial to amorphous SiNx (x ⩾ 1) occurs during growth. Elastic recoil detection analysis revealed an increase in nitrogen and argon content in SiNx layers during the phase transformation. The oxygen, carbon, and hydrogen contents in the multilayers were around the detection limit (~0.1 at.%) with no indication of segregation to the layer interfaces. Nanoindentation experiments confirmed superlattice hardening in the films. The highest hardness of 40.4 ± 0.8 GPa was obtained for 20-Å TiN with 5-Å-thick SiN(001) interlayers, compared to monolithic TiN at 20.2 ± 0.9 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
TABLE II.
FIG. 8

Similar content being viewed by others

References

  1. H. Söderberg, J.M. Molina-Aldareguia, L. Hultman M. Odén: Nanostructure formation during deposition of TiN/SiNx nanomultilayer films deposited by reactive magnetron sputtering. J. Appl. Phys. 97, 114327 2005

    Article  Google Scholar 

  2. H. Söderberg, J.M. Molina-Aldareguia, T. Larsson, L. Hultman M. Odén: Epitaxial stabilization of cubic-SiNx in TiN/SiNx multilayers. Appl. Phys. Lett. 88, 191902 2006

    Article  Google Scholar 

  3. X. Hu, H. Xhang, J. Dai, G. Li M. Gu: Study of the superhardness mechanism of Ti–Si–N nanocomposite films: influence of the thickness of the Si3N4 interfacial phase. J. Vac. Sci. Technol., A 23, 114 2005

    Article  CAS  Google Scholar 

  4. L. Hultman, J. Bareño, A. Flink, H. Söderberg, K. Larsson, V. Petrova, M. Odén, J.E. Greene I. Petrov: Interface structure in superhard TiN–SiN nanolaminates and superlattices: Film growth and ab initio calculations. Phys. Rev. B 75, 155437 2007

    Article  Google Scholar 

  5. Y-H. Chen, K.W. Lee, W-A. Chiou, Y-W. Chung L.M. Keer: Synthesis and structure of smooth, superhard TiN/SiNx multilayer coatings with an equiaxed microstructure. Surf. Coat. Technol. 146/147, 209 2001

    Article  Google Scholar 

  6. S. Veprek S. Reiprich: A concept for the design of novel superhard coatings. Thin Solid Films 268, 64 1995

    Article  CAS  Google Scholar 

  7. S. Veprek, M.G.J. Veprek-Heijman, P. Karvankova J. Prochazka: Different approaches to superhard coatings and nanocomposites. Thin Solid Films 476, 1 2005

    Article  CAS  Google Scholar 

  8. A. Niederhofer, T. Bolom, P. Nesládek, K. Moto, C. Eggs, D.S. Patil S. Veprek: The role of percolation threshold for the control of the hardness and thermal stability of super- and ultrahard nanocomposites. Surf. Coat. Technol. 146/147, 183 2001

    Article  Google Scholar 

  9. JCPDS No. 4-829. International Center for Diffraction Data: ICDD, Swarthmore, PA, 2004

    Google Scholar 

  10. JCPDS No. 38-1420. International Center for Diffraction Data: ICDD, Swarthmore, PA, 2004

    Google Scholar 

  11. H. Ljungcrantz, M. Odén, L. Hultman, J.E. Greene J-E. Sundgren: Nanoindentation studies of single-crystal (001), (011), and (111) oriented TiN layers on MgO. J. Appl. Phys. 80, 6725 1996

    Article  CAS  Google Scholar 

  12. C. Engström, T. Berlind, J. Birch, L. Hultman, I.P. Ivanov, S.R. Kirkpatrick S.L. Rohde: Design, plasma studies, and ion assisted thin film growth in unbalanced dual target sputtering system with a solenoid coil. Vacuum 56, 107 2000

    Article  Google Scholar 

  13. H. Söderberg, J. Birch, L. Hultman M. Odén: RHEED studies during growth of TiN/SiNx/TiN trilayers on MgO(001). Surf. Sci. 601, 2352 2007

    Article  Google Scholar 

  14. C.R. Powell, N-E. Lee, Y-W. Kim J.E. Greene: Heteroepitaxial wurtzite and zinc-blende structure GaN grown by reactive-ion molecular-beam epitaxy: Growth kinetics, microstructure, and properties. J. Appl. Phys. 73, 189 1993

    Article  CAS  Google Scholar 

  15. D.K. Aswal, K.P. Muthe, S. Tawde, S. Chodhury, N. Bagkar, A. Singh, S.K. Gupta J.V. Yakhmi: XPS and AFM investigations of annealing induced surface modifications of MgO single crystals. J. Cryst. Growth 236, 661 2002

    Article  CAS  Google Scholar 

  16. J.M. Molina-Aldareguia: Processing and nanoindentation behaviour of nitride multilayers. Ph.D. Thesis, University of Cambridge, Cambridge, England, 2002

    Google Scholar 

  17. D.L. Windt: IMD—Software for modeling the optical properties of multilayer films. Comput. Phys. 12, 360 1998

    Article  CAS  Google Scholar 

  18. M.S. del Rio R.J. Dejus: XOP: Recent developments. oc. SPIE, 3448, 340 1998

    Google Scholar 

  19. W. Bohne, J. Röhrich G. Röschert: The Berlin time-of-flight ERDA setup. Nucl. Instrum. Methods Phys. Res., Sect. B 136–138, 633 1998

    Article  Google Scholar 

  20. W.C. Oliver G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992

    Article  CAS  Google Scholar 

  21. L. Tapfer K. Ploog: X-ray interference in ultrathin epitaxial layers: A versatile method for the structural analysis of single quantum wells and heterointerfaces. Phys. Rev. B 40, 9802 1989

    Article  CAS  Google Scholar 

  22. U. Helmersson, S. Todorova, L. Markert, S.A. Barnett, J-E. Sundgren J.E. Greene: Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness. J. Appl. Phys. 62, 481 1987

    Article  CAS  Google Scholar 

  23. J. Xu, G. Li M. Gu: The microstructure and mechanical properties of TaN/TiN and TaWN/TiN superlattice films. Thin Solid Films 370, 45 2000

    Article  Google Scholar 

  24. M. Shinn, L. Hultman S.A. Barnett: Growth, structure, and microhardness of epitaxial TiN/NbN superlattices. J. Mater. Res. 7, 901 1992

    Article  CAS  Google Scholar 

  25. H. Söderberg, F. Giuliani, L. Hultman, W.J. Clegg M. Odén: Deformation structures in superhard TiN/SiNx nanolaminates. Thin Solid Films (2006, submitted)

  26. S. Sambasivan W.T. Petuskey: Phase chemistry in the Ti–Si–N system: Thermochemical review with phase stability diagrams. J. Mater. Res. 9, 2362 1994

    Article  CAS  Google Scholar 

  27. A. Flink, T. Larsson, J. Sjölén, L. Karlsson L. Hultman: Influence of Si on the microstructure of arc evaporated (Ti,Si)N thin films; Evidence for cubic solid solutions and their thermal stability. Surf. Coat. Technol. 200, 1535 2005

    Article  CAS  Google Scholar 

  28. L. Tapfer K. Ploog: Improved assessment of structural properties of AlxGa1−xAs/GaAs heterostructures and superlattices by double-crystal x-ray diffraction. Phys. Rev. B 33, 5565 1986

    Article  CAS  Google Scholar 

  29. M.W. Dashiell, J. Kolodzey, P. Boucaud, V. Yam J-M. Lourtioz: Heterostructures of pseudomorphic Ge1−yCy and Ge1−xySixCy alloys grown on Ge(001) substrates. J. Vac. Sci. Technol., A 18, 1728 2000

    Article  CAS  Google Scholar 

  30. G. Kioseoglou, S. Kim, Y.L. Soo, X. Chen, H. Luo, Y.H. Kao, Y. Sasaki, X. Liu J.K. Furdyna: Investigation of nanoscale structure in digital layers of Mn/GaAs and MnGa/GaAs. Appl. Phys. Lett. 80, 1150 2002

    Article  CAS  Google Scholar 

  31. I.W. Kim, Q. Li, L.D. Marks S.A. Barnett: Critical thickness for transformation of epitaxially stabilized cubic AlN in superlattices. Appl. Phys. Lett. 78, 892 2001

    Article  CAS  Google Scholar 

  32. J.S. Koehler: Attempt to design a strong solid. Phys. Rev. B 2, 547 1970

    Article  Google Scholar 

  33. J.M. Cairney, R. Tsukano, M.J. Hoffman M. Yang: Degradation of TiN coatings under cyclic loading. Acta Mater. 52, 3229 2004

    Article  CAS  Google Scholar 

  34. J.M. Cairney, M.J. Hoffman, P.R. Munroe, P.J. Martin A. Bendavid: Deformation and fracture of Ti–Si–N nanocomposite films. Thin Solid Films 479, 193 2005

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support by the Swedish Research Council [Vetenskapsrådet (V.R.)] and the Swedish Foundation for Strategic Research [Stiftelsen für Strategisk Forskning (S.S.F.)] is gratefully acknowledged. Dr. Wolfgang Bohne (Hahn–Meitner-Institut Berlin) is gratefully acknowledged for the ERDA measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Söderberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Söderberg, H., Odén, M., Flink, A. et al. Growth and characterization of TiN/SiN(001) superlattice films. Journal of Materials Research 22, 3255–3264 (2007). https://doi.org/10.1557/JMR.2007.0412

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2007.0412

Navigation