Skip to main content
Log in

Creep characteristics of alumina, nickel aluminate spinel, zirconia composites

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Fine grained, three-phase ceramic composites that exhibit favorable toughness, hardness, and high room-temperature strength were evaluated for high-temperature mechanical stability. A 50vol%Al2O3–25vol%NiAl2O4–25vol%3 mol%yttria-stabilized tetragonal zirconia polycrystal (3Y–TZP) and a 33vol%Al2O3–33vol%NiAl2O4–33vol%3Y-TZP composite were compression creep tested at temperatures between 1350 and 1450 °C under constant stresses of 20–45 MPa. The three-phase microstructure effectively limited grain growth (average d0 = 1.3 μm, average df = 1.6 μm after 65% true strain). True strain rates were 10−4 to 10−6 s−1 with stress exponents n = 1.7 to 1.8 and a grain-size exponent p = 1.3. A method for compensating for grain growth is presented using stress jump tests. The apparent activation energy for high-temperature deformation for 50vol%Al2O3–25vol%NiAl2O4–25vol%3Y–TZP was found to be 373 kJ/mol-K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1
FIG. 2
TABLE II.
FIG. 3
TABLE III.
FIG. 4
FIG. 5
FIG. 6
FIG. 7
TABLE IV.

Similar content being viewed by others

References

  1. D. Dudzinski, A. Devillez, A. Moufki, D. Larrouquere, V. Zerrouki, J. Vigneau: A review of developments towards dry and high speed machining of Inconel 718 alloy. Int. J. Machine Tools Manufact. 44, 439 2004

    Article  Google Scholar 

  2. M. Cain R. Morrell: Nanostructured ceramics: A review of their potential. Appl. Organomet. Chem. 15, 321 2001

    Article  CAS  Google Scholar 

  3. R. Arunachalam M.A. Mannan: Machinability of nickel-based high temperature alloys. Mach. Sci. Technol. 4, 127 2000

    Article  CAS  Google Scholar 

  4. R.W. Rice: Ceramic tensile strength-grain size relations: Grain sizes, slopes, and branch intersections. J. Mater. Sci. 32, 1673 1997

    Article  CAS  Google Scholar 

  5. F.F. Lange: Powder processing science and technology for increased reliability. J. Am. Ceram. Soc. 72, 3 1989

    Article  CAS  Google Scholar 

  6. A. Krell: A new look at grain size and load effects in the hardness of ceramics. Mater. Sci. Eng., A 245, 277 1998

    Article  Google Scholar 

  7. R.W. Rice: Microstructural dependence of fracture energy and toughness of ceramics and ceramic composites versus that of their tensile strengths at 22 °C. J. Mater. Sci. 31, 4503 1996

    Article  CAS  Google Scholar 

  8. C.S. Smith: Grains, phases, and interfaces: An interpretation of microstructure. Trans. Am. Inst. Mining Metall. Eng. 175, 15 1948

    Google Scholar 

  9. S.J. Lee W.M. Kriven A submicron-scale duplex zirconia and alumina composite by polymer complexation processing. Ceram. Eng. Sci. Proc., 20, 69 1999

  10. D.K. Kim W.M. Kriven: Processing and characterization of multi-phase ceramic composites: Part I. Duplex composites formed in-situ. J. Am. Ceram. Soc. (in press, 2007)

    Google Scholar 

  11. D.K. Kim W.M. Kriven: Processing and characterization of multi-phase ceramic composites: Part II. Triplex composites with a wide sintering temperature range. J. Am. Ceram. Soc. (in press, 2007)

    Google Scholar 

  12. D.K. Kim W.M. Kriven: Processing and characterization of multi-phase ceramic composites: Part III. Strong, hard and tough, high temperature, quadruplex and quintuplex composites. J. Am. Ceram. Soc. (in press, 2007)

    Google Scholar 

  13. T. Chen M.L. Mecartney: Comparison of the high-temperature deformation of alumina-zirconia and alumina-zirconia-mullite composites. J. Mater. Res. 20, 13 2005

    Article  CAS  Google Scholar 

  14. B.N. Kim, K. Hiraga, K. Morita Y. Sakka: A high-strain-rate superplastic ceramic. Nature 413, 288 2001

    Article  CAS  Google Scholar 

  15. T. Chen M.L. Mecartney: A high-strain-rate alumina-based ceramic composite. J. Am. Ceram. Soc. 88, 1004 2005

    Article  CAS  Google Scholar 

  16. M.A. Gülgün, M.H. Nguyen W.M. Kriven: Polymerized organic-inorganic synthesis of mixed oxides. J. Am. Ceram. Soc. 82, 556 1999

    Article  Google Scholar 

  17. M.H. Nguyen, S.J. Lee W.M. Kriven: Synthesis of oxide powders by way of a polymeric steric entrapment precursor route. J. Mater. Res. 14, 3417 1999

    Article  CAS  Google Scholar 

  18. M.A. Gülgün, W.M. Kriven M.H. Nguyen Processes for preparing mixed-oxide powders. U.S. Patent No. 6482 387, November 19, 2002

    Google Scholar 

  19. A.W. Thompson: Calculation of true volume grain diameter. Metallography 5, 366 1972

    Article  Google Scholar 

  20. A.H. Chokshi J.R. Porter: Analysis of concurrent grain growth during creep of polycrystalline alumina. J. Am. Ceram. Soc. 69, C37 1986

    Article  Google Scholar 

  21. J. Rosenblatt: Independent two-sample Student t tests in Basic Statistical Methods and Models for the Sciences Chapman & Hall/CRC Boca Raton, FL 2002 195

    Google Scholar 

  22. D.M. Owen A.H. Chokshi: The constant stress tensile creep-behavior of a superplastic zirconia-alumina composite. J. Mater. Sci. 29, 5467 1994

    Article  CAS  Google Scholar 

  23. A.R. de Arellano-Lopez, J.J. Melendez-Martinez, T.A. Cruse, R.E. Koritala, J.L. Routbort K.C. Goretta: Compressive creep of mullite containing Y2O3. Acta Mater. 50, 4325 2002

    Article  Google Scholar 

  24. K.R. Venkatachari R. Raj: Superplastic flow in fine-grained alumina. J. Am. Ceram. Soc. 69, 135 1986

    Article  CAS  Google Scholar 

  25. B.N. Kim, K. Hiraga, K. Morita, Y. Sakka T. Yamada: Enhanced tensile ductility in ZrO2-Al2O3-spinel composite ceramic. Scripta Mater. 47, 775 2002

    Article  CAS  Google Scholar 

  26. L.A. Xue I.W. Chen: Deformation and grain-growth of low-temperature-sintered high-purity alumina. J. Am. Ceram. Soc. 73, 3518 1990

    Article  CAS  Google Scholar 

  27. T.D. Chen M.L. Mecartney: Superplastic compression, microstructural analysis and mechanical properties of a fine grain three-phase alumina-zirconia-mullite ceramic composite. Mater. Sci. Eng., A 410, 134 2005

    Article  Google Scholar 

  28. M.F. Ashby R.A. Verrall: Diffusion-accommodated flow and superplasticity. Acta Metall. 21, 149 1973

    Article  CAS  Google Scholar 

  29. G. Bernard-Granger, C. Guizard R. Duclos: Compressive creep behavior in air of a slightly porous as-sintered polycrystalline α-alumina material. J. Mater. Sci. 42, 2807 2007

    Article  CAS  Google Scholar 

  30. B-N. Kim, K. Hiraga, Y. Sakka B-W. Ahn: A grain-boundary diffusion model of dynamic grain growth during superplastic deformation. Acta Mater. 47, 3433 1999

    Article  CAS  Google Scholar 

  31. R.S. Kottada A.H. Chokshi: The high temperature tensile and compressive deformation characteristics of magnesia doped alumina. Acta Mater. 48, 3905 2000

    Article  CAS  Google Scholar 

  32. Z.C. Wang, T.J. Davies N. Ridley: Net shape fabrication of ceramic specimens for superplastic tensile testing. Scripta Metall. Mater. 28, 301 1993

    Article  CAS  Google Scholar 

  33. J.D. French, J.H. Zhao, M.P. Harmer, H.M. Chan G.A. Miller: Creep of duplex microstructures. J. Am. Ceram. Soc. 77, 2857 1994

    Article  CAS  Google Scholar 

  34. Y. Oishi, K. Ando Y. Sakka: Lattice and grain boundary diffusion coefficients of cations in stabilized zirconias in Advances in Ceramics, Vol. 7 edited by M.F. Yan and A.H. Heuer The American Ceramic Society Columbus, OH 1983 208

    CAS  Google Scholar 

Download references

Acknowledgments

R.P. Dillon, J.E. Trujillo, and M.L. Mecartney are supported by the National Science Foundation under Grant Nos. DMR-0207197 and DMR-0606063. D-K. Kim is partially supported by the Air Force Office of Scientific Research under Grant No. F49620-03-1-0082. J.E. Trujillo is supported by University of California Leadership Excellence through Advanced Degrees (UC-LEADS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha L. Mecartney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dillon, R.P., Kim, DK., Trujillo, J.E. et al. Creep characteristics of alumina, nickel aluminate spinel, zirconia composites. Journal of Materials Research 23, 556–564 (2008). https://doi.org/10.1557/JMR.2008.0071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0071

Navigation