Skip to main content
Log in

Poroelastic nanoindentation responses of hydrated bone

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Indentation techniques are used for the measurement of mechanical properties of a wide range of materials. Typical elastic analysis for spherical indentation is applicable in the absence of time-dependent deformation, but is inappropriate for materials with time-dependent creep responses active in the experimental time frame. In the current work, a poroelastic analysis—a mechanical theory incorporating fluid motion through a porous elastic network—is used to examine spherical indentation creep responses of hydrated biological materials. Existing analytical and finite element solutions for the poroelastic Hertzian indentation problem are reviewed, and a poroelastic parameter identification scheme is developed. Experimental data from nanoindentation of hydrated bone immersed in water and polar solvents (ethanol, methanol, acetone) are examined within the poroelastic framework. Immersion of bone in polar solvents with decreasing polarity results in increased stiffness, decreased Poisson’s ratio, and decreased hydraulic permeability. Nanoindentation poroelastic analysis results are compared with existing literature for bone poroelasticity at larger length scales, and the effective pore size probed in indentation creep experiments was estimated to be 1.6 nm, consistent with the scale of fundamental collagen–apatite interactions. Results for water permeability in bone were compared with studies of water diffusion through fully dense bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
TABLE I
TABLE II
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. R. Huiskes B. van Rietbergen: Biomechanics of bone in Basic Orthopaedic Biomechanics and Mechanobiology, 3rd ed. edited by V.C. Mow and R. Huiskes Lippincott, Williams and Wilkins Philadelphia 2005 Chap. 4 123–179

    Google Scholar 

  2. F.S. Kaplan, W.C. Hayes, T.M. Keaveny, A. Boskey, T.A. Einhorn J.P. Iannotti: Form and function of bone in Orthopaedic Basic Science, edited by S.R. Simon AAOS Rosemont, IL 1994

    Google Scholar 

  3. J.L. Katz: Hard tissue as a composite material. I. Bounds on the elastic behavior. J. Biomech. 4, 455 1971

    Article  CAS  Google Scholar 

  4. M.L. Oyen C-C. Ko: Finite element modeling of bone ultrastructure as a two-phase composite in Mechanical Properties of Bioinspired and Biological Materials, edited by C. Viney, K. Katti, F-J. Ulm, and C. Hellmich, Mater. Res. Soc. Symp. Proc. 844 Warrendale, PA, 2005), Y8.7, pp. 263–268

  5. S.C. Cowin: Bone poroelasticity. J. Biomech. 32, 217 1999

    Article  CAS  Google Scholar 

  6. H.F. Wang: Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology Princeton University Press Princeton, NJ 2000

    Google Scholar 

  7. C.A. Schuh: Nanoindentation studies of materials. Mater. Today 9, 32 2006

    Article  CAS  Google Scholar 

  8. D. Ebenstein L. Pruitt: Nanoindentation of biological materials. Nano Today 1, 26 2006

    Article  Google Scholar 

  9. J.S. Field M.V. Swain: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 1993

    Article  CAS  Google Scholar 

  10. W.C. Oliver G.M. Pharr: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992

    Article  CAS  Google Scholar 

  11. E.H. Lee J.R.M. Radok: Contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 1960

    Article  Google Scholar 

  12. T.C.T. Ting: The contact stresses between a rigid indentor and a viscoelastic half-space. J. Appl. Mech. 88, 845 1966

    Article  Google Scholar 

  13. K.L. Johnson: Contact Mechanics Cambridge University Press Cambridge, UK 1985

    Book  Google Scholar 

  14. M.L. Oyen A.J. Bushby: Viscoelastic effects in small-scale indentation of biological materials. I. J. Surf. Sci. Eng. (2007, in press)

  15. M.L. Oyen: Analytical techniques for indentation of viscoelastic materials. Philos. Mag. 86, 5625 2006

    Article  CAS  Google Scholar 

  16. M.L. Oyen: Spherical indentation creep following ramp loading. J. Mater. Res. 20, 2094 2005

    Article  CAS  Google Scholar 

  17. M.L. Oyen C-C. Ko: Examination of local variations in viscous, elastic, and plastic indentation responses in healing bone. J. Mater. Sci.: Mater. Med. 18, 623 2007

    CAS  Google Scholar 

  18. R.S. Lakes: Materials with structural hierarchy. Nature 361, 511 1993

    Article  Google Scholar 

  19. A.K. Bembey, M.L. Oyen, A.J. Bushby A. Boyde: Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos. Mag. 86, 5691 2006

    Article  CAS  Google Scholar 

  20. A.K. Bembey, A.J. Bushby, A. Boyde, V.L. Ferguson M.L. Oyen: Hydration effects on bone micro-mechanical properties. J. Mater. Res. 21, 1962 2006

    Article  CAS  Google Scholar 

  21. J.M. Mattice, A.G. Lau, M.L. Oyen R.W. Kent: Spherical indentation load-relaxation of soft biological tissues. J. Mater. Res. 21, 2003 2006

    Article  CAS  Google Scholar 

  22. L.K. Agbezuge H. Deresiewicz: On the indentation of a consolidating half-space. Israel J. of Technol. 12, 322 1974

    Google Scholar 

  23. A.P.S. Selvadurai: Stationary damage modeling of poroelastic contact. Int. J. Solids Struct. 41, 2043 2004

    Article  Google Scholar 

  24. M.L. Oyen: Sensitivity of polymer nanoindentation creep properties to experimental variables. Acta Mater. 55, 3633 2007

    Article  CAS  Google Scholar 

  25. M.L. Oyen: Spherical indentation creep following ramp loading in Fundamentals of Nanoindentation and Nanotribology III, edited by K.J. Wahl, N. Huber, A.B. Mann, D.F. Bahr, and Y-T. Cheng (Mater. Res. Soc. Symp. Proc. 841 Warrendale, PA, 2005) p.211–216

  26. L.J. Gibson M.F. Ashby Cellular Solids: Structure and Properties, 2nd ed. Cambridge University Press Cambridge, UK 1997

    Book  Google Scholar 

  27. CRC Handbook of Chemistry and Physics, 73rd ed. D.R. Lide, editor CRC Press, Inc. Boca Raton, FL 1992–1993

    Google Scholar 

  28. P.K. Zysset, X.E. Guo, C.E. Hoffler, K.E. Moore S.A. Goldstein: Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J. Biomech. 32, 1005 1999

    Article  CAS  Google Scholar 

  29. C.W. McCutchen: Cartilage is poroelastic, not viscoelastic (including an exact theorem about strain energy and viscous loss, and an order of magnitude relation for equilibration time). J. Biomech. 15, 325 1982

    Article  CAS  Google Scholar 

  30. F. Vollrath: Strength and structure of spiders’ silks. Rev. Mol. Biotechnol. 74, 67 2000

    Article  CAS  Google Scholar 

  31. M.M. Ntim, A.K. Bembey, V.L. Ferguson A.J. Bushby: Hydration effects on the viscoelastic properties of collagen in Mechanical Behavior of Biological and Biomimetic Materials, edited by A.J. Bushby, V.L. Ferguson, C-C. Ko, and M.L. Oyen (Mater. Res. Soc. Symp. Proc. 898E Warrendale, PA, 2006), 0898-L05-02

  32. A.K. Bembey, M.L. Oyen, V.L. Ferguson, A.J. Bushby A. Boyde: Effect of water on mechanical properties of mineralized tissue composites in Mechanics of Biological and Bio-Inspired Materials, edited by C. Viney, K. Katti, C. Hellmich, U. Wegst (Mater. Res. Soc. Symp. Proc. 975E Warrendale, PA, 2007), 0975-DD09-04

  33. R.S. Lakes: Deformation mechanisms of negative Poisson’s ratio materials: Structural aspects. J. Mater. Sci. 26, 2287 1991

    Article  Google Scholar 

  34. H. Yasuda, C.E. Lamaze A. Peterlin: Diffusive and hydraulic permeabilities of water in water-swollen polymer membrane. J. Polym. Sci., Part A-2 9, 1117 1971

    Article  CAS  Google Scholar 

  35. M.A. Fernandez-Seara, S.L. Wehrli F.X. Wehrli: Diffusion of exchangeable water in cortical bone studied by nuclear magnetic resonance. Biophys. J. 82, 522 2002

    Article  CAS  Google Scholar 

  36. N. Sasaki A. Enyo: Viscoelastic properties of bone as a function of water content. J. Biomech. 28, 809 1995

    Article  CAS  Google Scholar 

  37. J.G. Swadener, J-Y. Rho G.M. Pharr: Effects of anisotropy on elastic moduli measured by nanoindentation in human tibial cortical bone. J. Biomed. Mater. Res. 57, 108 2001

    Article  CAS  Google Scholar 

  38. T.H. Smit, J.M. Huyghe S.C. Cowin: Estimation of the poroelastic parameters of cortical bone. J. Biomech. 35, 829 2002

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks A. Bushby and A. Bembey of the Materials Department, Queen Mary University of London, and A. Boyde and M. Arora in the Queen Mary, University of London Dental Institute, Biophysics Section, Centre for Oral Growth and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Oyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oyen, M.L. Poroelastic nanoindentation responses of hydrated bone. Journal of Materials Research 23, 1307–1314 (2008). https://doi.org/10.1557/JMR.2008.0156

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0156

Navigation