Skip to main content
Log in

Novel ultrahigh-strength nanolath martensitic steel by quenching–partitioning–tempering process

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A modified heat treatment process designated quenching–partitioning–tempering (Q–P–T) process is developed based on the quenching and partitioning process proposed by J.G. Speer et al. [Acta Mater.51, 2611 (2003)] and D.K. Matlock et al. [Mater. Sci. Forum426–432, 1089 (2003)]. A Fe–0.485C–1.195Mn–1.185Si–0.98Ni–0.21Nb steel after Q–P–T process satisfies the designed requirement of tensile strength over 2000 MPa and elongation over 10%. The microstructure characterization indicates that this ultrahigh-strength steel consists of nanomicrostructures including lath martensite, filmlike retained austenite, and dispersive Nb-containing carbides. The effect of tempering time on the mechanical properties is analyzed based on microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. Y. Sakuma: Recent achievements in manufacturing and application of high-strength steel sheets for automotive body structure Proc. of International Conference on Advanced High Strength Sheet Steels for Automotive Applications edited by M.A. Baker Association for Iron & Steel Technology Warrendale, PA 2004 11

  2. K. Sugimoto, M. Kobayshi, S. Hashimoto: Ductility and strain-induced transformation in a high strength TRIP-aided dual-phase steel. Metall. Trans. A 23, 3085 1992

    Article  Google Scholar 

  3. W.C. Leslie, G.G. Rauch: Precipitation of carbides in low carbon Fe–Al–C alloys. Metall. Trans. A 9, 343 1978

    Article  Google Scholar 

  4. X.D. Wang, B.X. Huang, Y.H. Rong, L. Wang: Transformation behavior of retained austenite in TRIP steels under stress. J. Mater. Sci. Technol. 22, 532 2006

    Google Scholar 

  5. E. Girault, A. Mertens, P. Jacques, Y. Houbaert, B. Verlinden, J. Van Humbeeck: Comparison of the effects of silicon and aluminium on the tensile behaviour of multiphase TRIP-assisted steels. Scr. Mater. 44, 885 2001

    Article  CAS  Google Scholar 

  6. F.G. Caballero, H.K.D.H. Bhadeshia: Very strong bainite. Curr. Opin. Solid State Mater. 8, 251 2004

    Article  CAS  Google Scholar 

  7. F.G. Caballero, H.K.D.H. Bhadeshia, J.A. Mawella, D.G. Jones, P. Brown: Very strong low temperature bainite. Mater. Sci. Technol. 18, 279 2002

    Article  CAS  Google Scholar 

  8. H.K.D.H. Bhadeshia: 52nd Hatfield Memorial Lecture. Large chunks of very strong steel. Mater. Sci. Technol. 21, 1293 2005

    Article  CAS  Google Scholar 

  9. J.G. Speer, D.K. Matlock, B.C. Cooman, J.G. Schroch: Carbon partitioning into austenite after martensite transformation. Acta Mater. 51, 2611 2003

    Article  CAS  Google Scholar 

  10. D.K. Matlock, V.E. Brautigam, J.G. Speer: Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel. Mater. Sci. Forum 426–432, 1089 2003

    Article  Google Scholar 

  11. C.G. Fan, H. Dong, J. Shi, Y.L. Lin, Q.L. Yong, W.J. Hui, M.Q. Wang, Y.Q. Weng: Microstructure and mechanical properties of 2200 MPa grade ultra-high strength low alloy steels. Ordnance Mater. Sci. Eng. 29, 31 2006 (in Chinese)

    Google Scholar 

  12. G. Krauss: Deformation and fracture in martensitic carbon steels tempered at low temperatures. Metall. Trans. B 32, 205 2001

    Article  Google Scholar 

  13. N. Zhong, X.D. Wang, B.X. Huang, Y.H. Rong, L. Wang: Microstructures and mechanical property of quenched and partitioned Fe–C–Mn–Si steel. Proc. Third Int. Conf. on Advanced Structural Steels edited by the Committee of ICASS Gyeongju Korea 2006 885

  14. T.Y. Hsu, Z.Y. Xu: Design of structure, composition and heat treatment process for high strength steel. Mater. Sci. Forum 561–565, 2283 2007

    Article  Google Scholar 

  15. X.D. Wang, B.X. Huang, L. Wang, Y.H. Rong: Microstructure and mechanical properties of microalloyed high-strength transformation-induced plasticity steels. Metall. Mater. Trans. A 39, 1 2008

    Article  Google Scholar 

  16. N. Zhong, X.D. Wang, Y.H. Rong, L. Wang: Interface migration between martensite and austenite during quenching and partitioning (Q&P) process. J. Mater. Sci. Technol. 22, 751 2006

    CAS  Google Scholar 

  17. D.P. Koistinen, R.E. Marburger: A general equation prescribing extend of austenite–martensite transformation in pure Fe–C alloys and plain carbon steels. Acta Metall. 7, 59 1959

    Article  Google Scholar 

  18. J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock: Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation. Curr. Opin. Solid State Mater. Sci. 8, 219 2004

    Article  CAS  Google Scholar 

  19. F.C. Rizzo, D.V. Edmonds, K. He, J.G. Speer, D.K. Matlock, A. Clarke: Carbon enrichment of austenite and carbide precipitation during the quenching and partitioning (Q&P) process. Solid-solid Phase Transformations in Inorganic Materials edited by J.M. Howe, D.E. Laughlin, J.K. Lee, U. Dahmen, and W.A. Soffa TMS Warrendale, PA 2005 535

  20. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, J.G. Speer: Quenching and partitioning martensite—A novel steel heat treatment. Mater. Sci. Eng., A 438–440, 25 2006

    Article  Google Scholar 

  21. F. Rizzo, A.R. Martins, J.G. Speer, D. Matlock, A. Clarke, B. De Cooman: Quenching and partitioning of Ni-added high strength steels. Mater. Sci. Forum 539–543, 4476 2007

    Article  Google Scholar 

  22. L.C. Zhang, H.B. Lu, C. Mickel, J. Eckert: Ductile ultrafine-grained Ti-based alloys with high yield strength. Appl. Phys. Lett. 91, 051906 2007

    Article  Google Scholar 

  23. B.V.N. Rao, G. Thomas: Structure-property relations and the design of Fe–4Cr–C base structural steels for high strength and toughness. Metall. Trans. A 11, 441 1980

    Article  Google Scholar 

  24. A.J. Clarke, J.P. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, E. De Moor: Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment. Acta Mater. 56, 16 2008

    Article  CAS  Google Scholar 

  25. L.C. Zhang, J. Das, H.B. Lu, C. Duhamel, M. Calina, J. Eckert: High strength Ti–Fe–Sn ultrafine composites with large plasticity. Scr. Mater. 57, 101 2007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (No. 50771110) and Baosteel Co., Ltd. (Shanghai, China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Rong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X.D., Zhong, N., Rong, Y.H. et al. Novel ultrahigh-strength nanolath martensitic steel by quenching–partitioning–tempering process. Journal of Materials Research 24, 260–267 (2009). https://doi.org/10.1557/JMR.2009.0029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2009.0029

Navigation