Skip to main content
Log in

Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Photoelectrochemical (PEC) water splitting for hydrogen production is a promising technology that uses sunlight and water to produce renewable hydrogen with oxygen as a by-product. In the expanding field of PEC hydrogen production, the use of standardized screening methods and reporting has emerged as a necessity. This article is intended to provide guidance on key practices in characterization of PEC materials and proper reporting of efficiencies. Presented here are the definitions of various efficiency values that pertain to PEC, with an emphasis on the importance of solar-to-hydrogen efficiency, as well as a flow chart with standard procedures for PEC characterization techniques for planar photoelectrode materials (i.e., not suspensions of particles) with a focus on single band gap absorbers. These guidelines serve as a foundation and prelude to a much more complete and in-depth discussion of PEC techniques and procedures presented elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Holdren Energy and sustainability. Science 315, 737 (2007)

    CAS  Google Scholar 

  2. N.S. Lewis, D.G. Nocera Powering the planet: Chemical challenges in solar energy utilization. Proc. Nat. Acad. Sci. U.S.A. 103, 15729 (2006)

    CAS  Google Scholar 

  3. A. Fujishima, K. Honda Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)

    CAS  Google Scholar 

  4. O. Khaselev, J.A. Turner A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425 (1998)

    CAS  Google Scholar 

  5. Measurements of PEC hydrogen production materials, U.S. Department of Energy (2009) http://www2.eere.energy.gov/hydrogenandfuelcells/pec_standards_review.html

  6. O. Khaselev, A. Bansal, J.A. Turner High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrogen Energy 26, 127 (2001)

    CAS  Google Scholar 

  7. U.S. Quantum Efficiency Measurements Department of Energy (2005) http://www1.eere.energy.gov/solar/quantum_efficiency.html

  8. O.K. Varghese, C.A. Grimes Appropriate strategies for determining the photoconversion efficiency of water photo electrolysis cells: A review with examples using titania nanotube array photoanodes. Sol. Energy Mater. Sol. Cells 92, 374 (2008)

    CAS  Google Scholar 

  9. T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrogen Energy 27, 991 (2002)

    CAS  Google Scholar 

  10. H. Mullejans, A. Ioannides, R. Kenny, W. Zaaiman, H.A. Ossenbrink, E.D. Dunlop Spectral mismatch in calibration of photovoltaic reference devices by global sunlight method. Meas. Sci. Technol. 16, 1250 (2005)

    Google Scholar 

  11. G.P. Smestad, F.C. Krebs, C.M. Lampert, C.G. Granqvist, K.L. Chopra, X. Mathew, H. Takakura Reporting solar cell efficiencies in solar energy materials and solar cells. Sol. Energy Mater. Sol. Cells 92, 371 (2008)

    CAS  Google Scholar 

  12. A.J. Nozik Photoelectrolysis of water using semiconducting TiO2 crystals. Nature 257, 383 (1975)

    CAS  Google Scholar 

  13. A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, J.A. Glasscock Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 31, 1999 (2006)

    CAS  Google Scholar 

  14. A.S.T. StandardM. G173, 2003e1 Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface (ASTM International, West Coshohocken, PA 2003)

    Google Scholar 

  15. M.A.A. Schoonen, Y. Xu, D.R. Strongin An introduction to geocatalysis. J. Geochem. Explor. 62, 201 (1998)

    CAS  Google Scholar 

  16. A. Roos Use of an integrating sphere in solar-energy research. Sol. Energy Mater. Sol. Cells 30, 77 (1993)

    CAS  Google Scholar 

  17. F. Jahan, M.H. Islam, B.E. Smith Band-gap and refractive-index determination of Mo-black coatings using several techniques. Sol. Energy Mater. Sol. Cells 37, 283 (1995)

    CAS  Google Scholar 

  18. M. Anwar, C.A. Hogarth Optical-properties of amorphous thin-films of MoO3 deposited by vacuum evaporation. Phys. Status Solidi A 109, 469 (1988)

    CAS  Google Scholar 

  19. K. Santra, C.K. Sarkar, M.K. Mukherjee, B. Ghosh Copper-oxide thin-films grown by plasma evaporation method. Thin Solid Films 213, 226 (1992)

    CAS  Google Scholar 

  20. A.B. Murphy Optical properties of an optically rough coating from inversion of diffuse reflectance measurements. Appl. Opt. 46, 3133 (2007)

    CAS  Google Scholar 

  21. P. Kubelka New contributions to the optics of intensely light-scattering materials. Part I. J. Opt. Soc. Am. 38, 448 (1948)

    CAS  Google Scholar 

  22. Y.I. Kim, S.J. Atherton, E.S. Brigham, T.E. Mallouk Sensitized layer metal-oxide-semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron-donors. J. Phys. Chem. 97, 11802 (1993)

    CAS  Google Scholar 

  23. A.B. Murphy Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 91, 1326 (2007)

    CAS  Google Scholar 

  24. A.P. Finlayson, V.N. Tsaneva, L. Lyons, M. Clark, B.A. Glowacki Evaluation of Bi-W-oxides for visible light photocatalysis. Phys. Status Solidi A 203, 327 (2006)

    CAS  Google Scholar 

  25. N. Kislov, S.S. Srinivasan, Y. Emirov, E.K. Stefanakos Optical absorption red and blue shifts in ZnFe2O4 nanoparticles. Mater. Sci. Eng., B 153, 70 (2008)

    CAS  Google Scholar 

  26. E.S. Brigham, C.S. Weisbecker, W.E. Rudzinski, T.E. Mallouk Stabilization of intrazeolitic cadmium telluride nanoclusters by ion exchange. Chem. Mater. 8, 2121 (1996)

    CAS  Google Scholar 

  27. D.G. Barton, M. Shtein, R.D. Wilson, S.L. Soled, E. Iglesia Structure and electronic properties of solid acids based on tungsten oxide nanostructures. J. Phys. Chem. B 103, 630 (1999)

    CAS  Google Scholar 

  28. R.J. Elliott Intensity of optical absorption by excitons. Phys. Rev. 108, 1384 (1957)

    CAS  Google Scholar 

  29. J. Tauc, R. Grigorov, A. Vancu Optical properties and electronic structure of amorphous germanium. J. Phys. Soc. J. Peripher. Nerv. Syst. 21, 123 (1966)

    CAS  Google Scholar 

  30. J. Tauc, A. Menth, D.L. Wood Optical and magnetic investigations of localized states in semiconducting glasses. Phys. Rev. Lett. 25, 749 (1970)

    CAS  Google Scholar 

  31. E.A. Davis, N.F. Mott Conduction in non-crystalline systems. V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 903 (1970)

    CAS  Google Scholar 

  32. D.L. Wood, J. Tauc Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5, 3144 (1972)

    Google Scholar 

  33. X. Mathew, N.R. Mathews, P.J. Sebastian Temperature dependence of the optical transitions in electrodeposited Cu2O thin films. Sol. Energy Mater. Sol. Cells 70, 277 (2001)

    CAS  Google Scholar 

  34. B. Balamurugan, B.R. Mehta, D.K. Avasthi, F. Singh, A.K. Arora, M. Rajalakshmi, G. Raghavan, A.K. Tyagi, S.M. Shivaprasad Modifying the nanocrystalline characteristics—Structure, size, and surface states of copper oxide thin films by high-energy heavy-ion irradiation. J. Appl. Phys. 92, 3304 (2002)

    CAS  Google Scholar 

  35. J.F. Pierson, Thobor-A. Keck, A. Billard Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering. Appl. Surf. Sci. 210, 359 (2003)

    CAS  Google Scholar 

  36. N.A.M. Shanid, M.A. Khadar Evolution of nanostructure, phase transition and band gap tailoring in oxidized Cu thin films. Thin Solid Films 516, 6245 (2008)

    CAS  Google Scholar 

  37. T. Kosugi, S. Kaneko Novel spray-pyrolysis deposition of cuprous oxide thin films. J. Am. Ceram. Soc. 81, 3117 (1998)

    CAS  Google Scholar 

  38. A.E. Rakhshani Preparation, characteristics and photovoltaic properties of cuprous-oxide—A review. Solid-State Electron. 29, 7 (1986)

    CAS  Google Scholar 

  39. H. Wieder, A.W. Czanderna Optical properties of copper oxide films. J. Appl. Phys. 37, 184 (1966)

    CAS  Google Scholar 

  40. V.F. Drobny, D.L. Pulfrey Properties of reactively-sputtered copper-oxide thin-films. Thin Solid Films 61, 89 (1979)

    CAS  Google Scholar 

  41. A.E. Rakhshani, J. Varghese Optical-absorption coefficient and thickness measurement of electrodeposited films of Cu2O. Phys. Status Solidi A 101, 479 (1987)

    CAS  Google Scholar 

  42. de P.E. Jongh, D. Vanmaekelbergh, J.J. Kelly Cu2O: Electrodeposition and characterization. Chem. Mater. 11, 3512 (1999)

    Google Scholar 

  43. A.S. Reddy, G.V. Rao, S. Uthanna, P.S. Reddy Structural and optical studies on do reactive magnetron sputtered Cu2O films. Mater. Lett. 60, 1617 (2006)

    CAS  Google Scholar 

  44. T. Mahalingam, J.S.P. Chitra, J.P. Chu, H. Moon, H.J. Kwon, Y.D. Kim Photoelectrochemical solar cell studies on electroplated cuprous oxide thin films. J. Mater. Sci. - Mater. Electron. 17, 519 (2006)

    CAS  Google Scholar 

  45. W. Siripala, L. Perera, K.T.L. DeSilva, J. Jayanetti, I.M. Dharmadasa Study of annealing effects of cuprous oxide grown by electrodeposition technique. Sol. Energy Mater. Sol. Cells 44, 251 (1996)

    CAS  Google Scholar 

  46. W.P. Gomes, F. Cardon Electron-energy levels in semiconductor electrochemistry. Prog. Surf. Sci. 12, 155 (1982)

    CAS  Google Scholar 

  47. L. Weinhardt, M. Blum, M. Bar, C. Heske, B. Cole, B. Marsen, E.L. Miller Electronic surface level positions of WO3 thin films for photoelectrochemical hydrogen production. J. Phys. Chem. C 112, 3078 (2008)

    CAS  Google Scholar 

  48. M. Bar, S. Nishiwaki, L. Weinhardt, S. Pookpanratana, O. Fuchs, M. Blum, W. Yang, J.D. Denlinger, W.N. Shafarman, C. Heske Depth-resolved band gap in Cu(In,Ga)(S,Se)(2) thin films. Appl. Phys. Lett. 93, 244103 (2008)

    Google Scholar 

  49. J.A. Turner Energetics of the semiconductor-electrolyte interface. J. Chem. Educ. 60, 327 (1983)

    CAS  Google Scholar 

  50. T.G. Deutsch Sunlight, water, and III-V ntrides for fueling the future Ph.D. Thesis University of Colorado (2006)

    Google Scholar 

  51. J.F. Geisz, D.J. Friedman, S. Kurtz GaNPAs solar cells lattice-matched to GaP Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002 (2002)

    Google Scholar 

  52. F. Cardon, W.P. Gomes Determination of flat-band potential of a semiconductor in contact with a metal or an electrolyte from Mott-Schottky plot. J. Phys. D: Appl. Phys. 11, L63 (1978)

    CAS  Google Scholar 

  53. A.J. Nozik, R. Memming Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem. 100, 13061 (1996)

    CAS  Google Scholar 

  54. J.N. Chazalviel Experimental techniques for the study of the semiconductor-electrolyte interface. Electrochim. Acta 33, 461 (1988)

    CAS  Google Scholar 

  55. R.L. Vanmeirhaeghe, E.C. Dutoit, F. Cardon, W.P. Gomes Application of Kramers-Kronig relations to problems concerning frequency-dependence of electrode impedance. Electrochim. Acta 20, 995 (1975)

    CAS  Google Scholar 

  56. C.A. Koval, J.N. Howard Electron-transfer at semiconductor electrode liquid electrolyte interfaces. Chem. Rev. 92, 411 (1992)

    CAS  Google Scholar 

  57. Y.V. Pleskov, V.M. Mazin, Y.E. Evstefeeva, V.P. Varnin, I.G. Teremetskaya, V.A. Laptev Photoelectrochemical determination of the flatband potential of boron-doped diamond. Electrochem. Solid-State Lett. 3, 141 (2000)

    CAS  Google Scholar 

  58. B. Marsen, B. Cole, E.L. Miller Influence of sputter oxygen partial pressure on photoelectrochemical performance of tungsten oxide films. Sol. Energy Mater. Sol. Cells 91, 1954 (2007)

    CAS  Google Scholar 

  59. B.D. Alexander, P.J. Kulesza, L. Rutkowska, R. Solarska, J. Augustynski Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18, 2298 (2008)

    CAS  Google Scholar 

  60. B. Marsen, B. Cole, E.L. Miller Photoelectrolysis of water using thin copper gallium diselenide electrodes. Sol. Energy Mater. Sol. Cells 92, 1054 (2008)

    CAS  Google Scholar 

  61. H.L. Wang, T.G. Deutsch, J.A. Turner Direct water splitting under visible light with nanostructured hematite and WO3 photoanodes and a GaInP2 photocathode. J. Electrochem. Soc. 155, F91 (2008)

    CAS  Google Scholar 

  62. D.S. Ginley, M.A. Butler Photoelectrolysis of water using iron titanate anodes. J. Appl. Phys. 48, 2019 (1977)

    CAS  Google Scholar 

  63. K. Fujii, T. Karasawa, K. Oshkawa Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation. Jpn. J. Appl. Phys. 44, L543 (2005)

    CAS  Google Scholar 

  64. H. Hashiguchi, K. Maeda, R. Abe, A. Ishikawa, J. Kubota, K. Domen Photoresponse of GaN:ZnO electrode on FTO under visible light irradiation. Bull. Chem. Soc. Jpn. 82, 401 (2009)

    CAS  Google Scholar 

  65. Technical Plan Hydrogen Production, Multi-Year Research, Development and Demonstration Plan: Planned Program Activities for 2005-2015, U.S. Department of Energy (2007) http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Jaramillo.

Additional information

These authors were editors of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Jaramillo, T.F., Deutsch, T.G. et al. Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. Journal of Materials Research 25, 3–16 (2010). https://doi.org/10.1557/JMR.2010.0020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0020

Navigation