Skip to main content
Log in

Low temperature consolidated lead-free ferroelectric niobate ceramics with improved electrical properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

There is a concerted effort to develop lead-free piezoelectric ceramics. (Na0.5K0.5)NbO3-based ceramics have good electrical properties, and are a potential replacement material for lead zirconate titanate piezoelectric ceramics. In this work a commercial powder based on (Na0.5K0.5)NbO3 with an initial particle size of ~260 nm was consolidated by spark plasma sintering (SPS). To avoid volatilization, high mechanical pressures were used to minimize the densification temperature. It was found that under a uniaxial pressure of 100 MPa, fully densified compacts can be prepared at 850 °C. Ceramics densified at such a low temperature demonstrate an unusually high remanent polarization (30 µC/cm2) and high d33 (146 pC/N). The improved ferroelectric properties are ascribed to the homogeneous, dense, and submicron grained microstructure achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Cross Materials science: Lead-free at last. Nature 432, 24 (2004)

    Article  CAS  Google Scholar 

  2. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura Lead-free piezoceramics. Nature 432, 84 (2004)

    Article  CAS  Google Scholar 

  3. L. Egerton, D.M. Dillon Piezoelectric and dielectric properties of ceramics in the system of potassium-sodium niobate. J. Am. Ceram. Soc. 42, 438 (1959)

    Article  CAS  Google Scholar 

  4. G.H. Haertling Properties of hot-pressed ferroelectric alkali niobate ceramics. J. Am. Ceram. Soc. 50, 329 (1967)

    Article  CAS  Google Scholar 

  5. V.J. Tennery, K.W. Hang Thermal and x-ray diffraction studies of the sodium niobate(V)-potassium niobate(V) system. J. Appl. Phys. 39, (10) 4749 (1968)

    Article  CAS  Google Scholar 

  6. B. Zhang, J. Li, K. Wang, H. Zhang Compositional dependence of piezoelectric properties in NaxK1–xNbO3 lead-free ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89, (5) 1605 (2006)

    Article  CAS  Google Scholar 

  7. R.E. Jaeger, L. Egerton Hot pressing of potassium sodium niobates. J. Am. Ceram. Soc. 45, 209 (1962)

    Article  CAS  Google Scholar 

  8. H. Takao, Y. Saito, Y. Aoki, K. Horibuchi Microstrutural evolution of crystalline-oriented (K0.5Na0.5)NbO3 piezoelectric ceramics with a sintering aid of CuO. J. Am. Ceram. Soc. 89, (6) 1951 (2006)

    Article  CAS  Google Scholar 

  9. T.A. Skidmore, S.J. Milne Phase development during mixed-oxide processing of a [Na0.5K0.5NbO3]1–x–[LiTaO3]x powder. J. Mater. Res. 22, (8) 2265 (2007)

    Article  CAS  Google Scholar 

  10. D. Jenko, A. Bencan, B. Malic, J. Holc, M. Kosec Electron microscopy studies of potassium sodium niobate ceramics. Microsc. Microanal. 11, 572 (2005)

    Article  CAS  Google Scholar 

  11. Y. Zhen, J-F Li Normal sintering of (K,Na)NbO3-based ceramics: Influence of sintering temperature on densification, microstructure, and electrical properties. J. Am. Ceram. Soc. 89, (12)3669 (2006)

    Article  Google Scholar 

  12. B. Jaffe, W.R. Cook Jr., H. Jaffe Piezoelectric Ceramics (Academic Press, London 1971) 185–212

    Google Scholar 

  13. J. Li, K. Wang, B. Zhang, L. Zhang Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89, (2) 706 (2006)

    Article  CAS  Google Scholar 

  14. B. Malic, J. Bernard, J. Holc, D. Jenko, M. Kosec Alkaline-earth doping in (K,Na)NbO3 based piezoceramics. J. Eur. Ceram. Soc. 25, (12) 2707 (2005)

    Article  CAS  Google Scholar 

  15. R. Zuo, J. Roedel Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 89, (6) 2010 (2006)

    Article  CAS  Google Scholar 

  16. H-Y Park, C-W Ahn, H-C Song, J-H Lee, S. Nahm, K. Uchino, H-G Lee, H-J Lee Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 ceramics. Appl. Phys. Lett. 89, 062906 (2006)

    Article  Google Scholar 

  17. R. Wang, R. Xie, T. Sekiya, Y. Shimojo Fabrication and characterization of potassium-sodium niobate piezoelectric ceramics by spark-plasma-sintering method. Mater. Res. Bull. 39, 1709 (2004)

    Article  CAS  Google Scholar 

  18. L. Egerton, C.A. Bieling Isostatically hot-pressed sodium-potassium niobate transducer material for ultrasonic devices. Am. Ceram. Soc. Bull. 47, (12) 1151 (1968)

    CAS  Google Scholar 

  19. R.H. Dungan, R.D. Golding Polarization of NaNbO3–KNbO3 solid solutions. J. Am. Ceram. Soc. 48, (11) 601 (1965)

    Article  CAS  Google Scholar 

  20. M. Tokita Innovative sintering process. Spark plasma sintering (SPS). Materials Integration 19, (12) 42 (2006)

    CAS  Google Scholar 

  21. M. Tokita Present situation and future prospects of spark plasma sintering (SPS) system. Shinsozai 7, (1) 19 (1996)

    CAS  Google Scholar 

  22. Z.A. Munir, Anselmi-U. Tamburini The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763 (2006)

    Article  CAS  Google Scholar 

  23. D. Salamon, Z. Shen, P. Šajgalík Rapid formation of a-sialon during spark plasma sintering: Its origin and implications. J. Eur. Ceram. Soc. 27, (6) 2541 (2007)

    Article  CAS  Google Scholar 

  24. M. Ahtee, A.W. Hewat Structural phase transitions in sodium-potassium niobate solid solutions by neutron powder diffraction. Acta Crystallogr., Sect. A 34, (2) 309 (1978)

    Article  Google Scholar 

  25. M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S. Hirano Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. J. Am. Ceram. Soc. 88, (5) 1190 (2005)

    Article  CAS  Google Scholar 

  26. W.R. Buessem, L.E. Cross, A.K. Goswami Phenomenological theory of high permittivity in fine-grained barium titanate. J. Am. Ceram. Soc. 49, (1) 33 (1966)

    Article  CAS  Google Scholar 

  27. H. Zhang, H. Yan, H. Ning, M.J. Reece, M. Eriksson, Z. Shen, Y. Kan, P. Wang Grain-size effect on the properties of Aurivillius phase Bi3.15Nd0.85Ti3O12 ferroelectric ceramics. Nanotechnology 20, 385708 (2009)

    Article  Google Scholar 

  28. B. Sundarakannan, K. Kakimoto, H. Ohsato Frequency- and temperature-dependent dielectric and conductivity behavior of KNbO3 ceramics. J. Appl. Phys. 94, (8) 5182 (2003)

    Article  CAS  Google Scholar 

  29. Y. Kizaki, Y. Noguchi, M. Miyayama Defect control for low leakage current in K0.5Na0.5NbO3 single crystals. Appl. Phys. Lett. 89, (14) 142910 (2006)

    Article  Google Scholar 

  30. G. Shirane, R. Newnham, R. Pepinsky Dielectric properties and phase transitions of NaNbO3 and (Na,K)NbO3. Phys. Rev. 96, 581 (1954)

    Article  CAS  Google Scholar 

  31. G. Shirane, H. Danner, A. Pavlovic, R. Pepinsky Phase transitions in ferroelectric KNbO3. Phys. Rev. 93, 672 (1954)

    Article  CAS  Google Scholar 

  32. Q.M. Zhang, W.Y. Pan, S.J. Jang, L.E. Cross Domain wall excitations and their contributions to the weak-signal response of doped lead zirconate titanate ceramics. J. Appl. Phys. 64, (11) 6445 (1988)

    Article  CAS  Google Scholar 

  33. Q.M. Zhang, H. Wang, N. Kim, L.E. Cross Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. J. Appl. Phys. 75, (1) 454 (1994)

    Article  CAS  Google Scholar 

  34. J. Nuffer, D.C. Lupascu, J. Rodel Damage evolution in ferroelectric PZT induced by bipolar electric cycling. Acta Mater. 48, (14) 3783 (2000)

    Article  CAS  Google Scholar 

  35. Y. Guo, K. Kakimoto, H. Ohsato Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3–SrTiO3 ceramics. Solid State Commun. 129, 279 (2004)

    Article  CAS  Google Scholar 

  36. Y. Chang, Z. Yang, X. Chao, R. Zhang, X. Li Dielectric and piezoelectric properties of alkaline-earth titanate doped (K0.5Na0.5) NbO3 ceramics. Mater. Lett. 61, 785 (2007)

    Article  CAS  Google Scholar 

  37. E. Ringgaard, T. Wurlitzer Lead-free piezoceramics based on alkali niobates. J. Eur. Ceram. Soc. 25, (12) 2701 (2005)

    Article  CAS  Google Scholar 

  38. H. Birol, D. Damjanovic, N. Setter Preparation and characterization of (K0.5Na0.5)NbO3 ceramics. J. Eur. Ceram. Soc. 26, (6) 861 (2006)

    Article  CAS  Google Scholar 

  39. Y. Guo, K-I Kakimoto, H. Ohsato Structure and electrical properties of lead-free (Na0.5 K0.5)NbO3–BaTiO3 Ceramics. Jpn. J. Appl. Phys. 43, 6662 (2004)

    Article  CAS  Google Scholar 

  40. Y. Guo, K-I Kakimoto, H. Ohsato Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijian Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksson, M., Yan, H., Nygren, M. et al. Low temperature consolidated lead-free ferroelectric niobate ceramics with improved electrical properties. Journal of Materials Research 25, 240–247 (2010). https://doi.org/10.1557/JMR.2010.0034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0034

Navigation