Skip to main content
Log in

Revelation of solid solubility limit Fe/Ni = 1/12 in corrosion resistant Cu-Ni alloys and relevant cluster model

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Minor Fe additions are necessary to enhance the corrosion resistance of commercial Cu-Ni alloys. The present paper aims at optimizing the Fe content in three alloy series Cu90(Ni,Fe)10, Cu80(Ni,Fe)20, and Cu70(Ni,Fe)30 (at.%) from the viewpoint of their corrosion performance in a 3.5% NaCl solution. An Fe/Ni = 1/12 solid solubility limit line was revealed in the Cu-Ni-Fe phase diagram. Three Fe/Ni = 1/12 alloys, Cu90Ni9.23Fe0.77 (at.%) = Cu-8.6Ni-0.7Fe (wt.%), Cu80Ni18.46Fe1.54 = Cu-17.3Ni-1.4Fe, and Cu70Ni27.7Fe2.3 = Cu-26.2Ni-2.1Fe, show the best corrosion performances in their respective alloy series. The Fe/Ni = 1/12 solubility limit is explained by assuming isolated Fe-centered FeNi12 cuboctahedral clusters embedded in a Cu matrix. The three Fe/Ni = 1/12 alloys can be respectively described by cluster formulas [Fe1Ni12]Cu117, [Fe1Ni12]Cu52, and [Fe1Ni12]Cu30.3. The Fe/Ni = 1/12 rule may serve an important guideline in the industrial Cu-Ni alloy selection because above this limit, easy precipitation would negate the corrosion properties of the Cu-Ni-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Pearson Role of iron in the inhibition of corrosion of marine heat exchangers. Br. Corros. J. 7, 61 (1972)

    Article  CAS  Google Scholar 

  2. W.C. Stewart, F.L. LaQue Corrosion-resisting characteristics of iron-modified 90-10 cupro-nickel alloy. Corros. 8, 259 (1952)

    Article  CAS  Google Scholar 

  3. K.D. Efird The synergistic effect of Ni and Fe on the seawater corrosion of copper alloy. Corros. 33, 347 (1977)

    Article  CAS  Google Scholar 

  4. L.J.P. Drolenga, F.P. Ijsseling The influence of alloy composition and microstructure on the corrosion behaviour of Cu-Ni alloys in seawater. Mater. Corros. 34, 167 (1983)

    Article  CAS  Google Scholar 

  5. G.L. Bailey Copper-nickel iron alloys resistant to sea-water corrosion. J. Inst. Met. 79, 243 (1951)

    CAS  Google Scholar 

  6. J.M. Popplewell, R.J. Hart The effect of iron on the corrosion characteristics of 90-10 cupronickel in quiescent 3.4% sodium chloride solution. Corros. Sci. 13, 295 (1973)

    Article  CAS  Google Scholar 

  7. L.J. Swartzendruber Phase Diagram of Binary Iron Alloys (ASM International, Materials Park, OH 1993) 131

    Google Scholar 

  8. C. Servant, B. Sundman, O. Lyon Thermodynamic assessment of the Cu-Fe-Ni system. Calphad 25, 79 (2001)

    Article  CAS  Google Scholar 

  9. K.P. Gupta The Cu-Fe-Ni (Copper-Iron-Nickel) System, Phase Diagrams of Ternary Nickel Alloys (Indian Institute of Metals, Calcutta 1990) 290

    Google Scholar 

  10. R.F. North, M.J. Pryor The influence of corrosion product structure on the corrosion rate of Cu-Ni alloys. Corros. Sci. 10, 297 (1970)

    Article  CAS  Google Scholar 

  11. Hume-W. Rothery The Structure of Metals and Alloys (The Institute of Metals, London 1969)

    Google Scholar 

  12. V.A. Singh, A. Zunger Phenomenology of solid solubilities and ion-implantation sites: An orbital-radii approach. Phys. Rev. B 25, 907 (1982)

    Article  CAS  Google Scholar 

  13. J.R. Chelikowsky Solid solubilities in divalent alloys. Phys. Rev. B 19, 686 (1979)

    Article  CAS  Google Scholar 

  14. J.A. Alonso, S. Simozar Prediction of solid solubility in alloys. Phys. Rev. B 22, 5583 (1980)

    Article  CAS  Google Scholar 

  15. P.C. Clapp Atomic configurations in binary alloys. Phys. Rev. B 4, 255 (1971)

    Article  Google Scholar 

  16. J. Büth, G. Inden Structure and properties of spinodally decomposed Cu-Ni-Fe alloys. Acta Mater. 30, 213 (1982)

    Article  Google Scholar 

  17. W.L. Bragg, E.J. Williams The effect of thermal agitation on atomic arrangement in alloys. Proc. R. Soc. London, Ser. A 145, 699 (1934)

    Article  CAS  Google Scholar 

  18. H.A. Bethe Statistical theory of superlattices. Proc. R. Soc. London, Ser. A 150, 552 (1935)

    Article  CAS  Google Scholar 

  19. R. Peierls Statistical theory of superlattices with unequal concentrations of the components. Proc. R. Soc. London, Ser. A 154, 207 (1936)

    Article  CAS  Google Scholar 

  20. J.G. Kirkwood Order and disorder in binary solid solutions. J. Chem. Phys. 6, 70 (1938)

    Article  CAS  Google Scholar 

  21. J.M. Cowley An approximate theory of order in alloys. Phys. Rev. 77, 669 (1950)

    Article  CAS  Google Scholar 

  22. C. Dong, Q. Wang, J.B. Qiang, Y.M. Wang, N. Jiang, G. Han, Y.H. Li, J. Wu, J.H. Xia From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses. J. Phys. D: Appl. Phys. 40, R273 (2007)

    Article  CAS  Google Scholar 

  23. J.H. Xia, J.B. Qiang, Y.M. Wang, Q. Wang, C. Dong Ternary bulk metallic glasses formed by minor alloying of Cu8Zr5 icosahedron. Appl. Phys. Lett. 88, 101907 (2006)

    Article  Google Scholar 

  24. D.B. Miracle The efficient cluster packing model—An atomic structural model for metallic glasses. Acta Mater. 54, 4317 (2006)

    Article  CAS  Google Scholar 

  25. A. Takeuchi, A. Inoue Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloy. Mater. Trans., JIM 41, 1372 (2000)

    Article  CAS  Google Scholar 

  26. V.G. Gavriljuk, B.D. Shanina, H. Berns On the correlation between electron structure and short range atomic order in iron-based alloys. Acta Mater. 48, 3879 (2000)

    Article  CAS  Google Scholar 

  27. A.J. Sedriks Advanced materials in marine environments. Mater. Perform. 33, 56 (1994)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Wang, Q., Wang, Y. et al. Revelation of solid solubility limit Fe/Ni = 1/12 in corrosion resistant Cu-Ni alloys and relevant cluster model. Journal of Materials Research 25, 328–336 (2010). https://doi.org/10.1557/JMR.2010.0041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0041

Navigation