Skip to main content
Log in

Superhydrophobic fabrics from hybrid silica sol-gel coatings: Structural effect of precursors on wettability and washing durability

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Particle-containing silica sol was synthesized by co-hydrolysis and co-condensation of two silane precursors, tetraethylorthosilicate (TEOS) and an organic silane composed of a non-hydrolyzable functional group (e.g., alkyl, fluorinated alkyl, and phenyl), and used to produce superhydrophobic coatings on fabrics. It has been revealed that the non-hydrolyzable functional groups in the organic silanes have a considerable influence on the fabric surface wettability. When the functional group was long chain alkyl (C16), phenyl, or fluorinated alkyl (C8), the treated surfaces were highly superhydrophobic with a water contact angle (CA) greater than 170°, and the CA value was little affected by the fabric type. The washing durability of the superhydrophobic coating was improved by introducing the third silane containing epoxide group, 3-glycidoxypropyltrimethoxysilane (GPTMS), for synthesis. Although the presence of epoxide groups in the coating slightly reduced the fabrics’ superhydrophobicity, the washing durability was considerably improved when polyester and cotton fabrics were used as substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.N. Wenzel: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem.28988 (1936)

    Article  CAS  Google Scholar 

  2. A.B.D. Cassie, T.S. Baxter: Wettability of porous surfaces. Trans. Faraday Soc.40546 (1944)

    Article  CAS  Google Scholar 

  3. R.E. Johnson, R.H. Dettre Contact Angle, Wettability, and Adhesion (American Chemical Society, Washington, DC 1964)

    Google Scholar 

  4. A. Marmur: The lotus effect: Superhydrophobicity and metastability. Langmuir203517 (2004)

    Article  CAS  Google Scholar 

  5. D. Oener, T.J. McCarthy: Ultrahydrophobic surfaces; Effects of topography length scales on wettability. Langmuir167777 (2000)

    Article  CAS  Google Scholar 

  6. J.C. Love, B.D. Gates, D.B. Wolfe, K.E. Paul, G.M. Whitesides: Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Lett.2891 (2002)

    Article  CAS  Google Scholar 

  7. L. Feng, Song Y., Zhai J., B. Liu, J. Xu, L. Jiang, D. Zhu: Creation of a superhydrophobic surface from an amphiphilic polymer. Angew. Chem. Int. Ed.42800 (2003)

    CAS  Google Scholar 

  8. M. Morra, E. Occhiello, F. Garbassi: Contact angle hysteresis in oxygen plasma treated poly(tetrafluoroethylene). Langmuir5872 (1989)

    Article  CAS  Google Scholar 

  9. W. Chen, A.Y. Fadeev, M.C. Hsieh, D. Oener, J. Youngblood, T.J. McCarthy: Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples. Langmuir153395 (1999)

    CAS  Google Scholar 

  10. F. Burmeister, C. Kohn, R. Kuebler, G. Kleer, B. Blaesi, A. Gombert: Applications for TiAlN- and TiO2-coatings with nanoscale surface topographies. Surf. Coat. Technol.2001555 (2005)

    Article  CAS  Google Scholar 

  11. M.T. Khorasani, H. Mirzadeh, Z. Kermani: Wettability of porous polydimethylsiloxane surface: Morphology study. Appl. Surf. Sci.242339 (2005)

    Article  CAS  Google Scholar 

  12. J.D. Samuel, S. Jeyaprakash, J. Ruehe: A facile photochemical surface modification technique for the generation of microstructured fluorinated surfaces. Langmuir2010080 (2004)

    Article  CAS  Google Scholar 

  13. S. Ren, S. Yang, Y. Zhao, T. Yu, X. Xiao: Preparation and characterization of an ultrahydrophobic surface based on a stearic acid self-assembled monolayer over polyethyleneimine thin films. Surf. Sci.54664 (2003)

    Article  CAS  Google Scholar 

  14. M. Li, J. Zhai, H. Liu, Y. Song, L. Jiang, D. Zhu: Electrochemical deposition of conductive superhydrophobic zinc oxide thin films. J. Phys. Chem. B1079954 (2003)

    Article  CAS  Google Scholar 

  15. J. Genzer, K. Efimenko: Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers. Science2902130 (2000)

    Article  CAS  Google Scholar 

  16. Z-Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, O. Sato: Structural color and the lotus effect. Angew. Chem. Int. Ed.42894 (2003)

    Article  CAS  Google Scholar 

  17. Y. Li, W. Cai, G. Duan, B. Cao, F. Sun, F. Lu: Superhydrophobicity of 2D ZnO ordered pore arrays formed by the solution-dipping template method. J. Colloid Interface Sci.287634 (2005)

    Article  CAS  Google Scholar 

  18. G. Zhang, D. Wang, Z-Z. Gu, H. Mohwald: Fabrication of superhydrophobic surfaces from binary colloidal assembly. Langmuir219143 (2005)

    Article  CAS  Google Scholar 

  19. K. Tadanaga, N. Katata, T. Minami: Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol-gel method. J. Am. Ceram. Soc.803213 (1997)

    Article  CAS  Google Scholar 

  20. A. Nakajima, C. Saiki, K. Hashimoto, T. Watanabe: Processing of roughened silica film by coagulated colloidal silica for super-hydrophobic coating. J. Mater. Sci. Lett.201975 (2001)

    CAS  Google Scholar 

  21. A. Roig, E. Molins, E. Rodriguez, S. Martinez, M. Moreno-Manas, A. Vallribera: Superhydrophobic silica aerogels by fluorination at the gel stage. Chem. Commun. 2316 (2004)

    Google Scholar 

  22. Q. Xie, G. Fan, N. Zhao, X. Guo, J. Xu, J. Dong, L. Zhang, Y. Zhang, C.C. Han: Facile creation of a bionic super-hydrophobic block copolymer surface. Adv. Mater.161830 (2004)

    CAS  Google Scholar 

  23. N. Zhao, Q. Xie, L. Weng, S. Wang, X. Zhang, J. Xu: Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution. Macromolecules388996 (2005)

    CAS  Google Scholar 

  24. H. Yabu, M. Shimomura: Single-step fabrication of transparent superhydrophobic porous polymer films. Chem. Mater.175231 (2005)

    CAS  Google Scholar 

  25. M. Hikita, K. Tanaka, T. Nakamura, T. Kajiyama, A. Takahara: Super-liquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups. Langmuir217299 (2005)

    CAS  Google Scholar 

  26. S. Wang, L. Feng, L. Jiang: One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces. Adv. Mater.18767 (2006)

    CAS  Google Scholar 

  27. C-T. Hsieh, W-Y. Chen, F-L. Wu: Fabrication and superhydrophobicity of fluorinated carbon fabrics with micro/nanoscaled two-tier roughness. Carbon461218 (2008)

    CAS  Google Scholar 

  28. B. Xu, Z.S. Cai: Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Appl. Surf. Sci.2545899 (2008)

    CAS  Google Scholar 

  29. T. Wang, X. Hu, S. Dong: A general route to transform normal hydrophilic cloths into superhydrophobic surfaces. Chem. Commun. 1849 (2007)

    Google Scholar 

  30. K. Ramaratnam, V. Tsyalkovsky, V. Klep, I. Luzinov: Ultrahydrophobic textile surface via decorating fibers with a monolayer of reactive nanoparticles and non-fluorinated polymer. Chem. Commun.434510 (2007)

    Article  Google Scholar 

  31. S. Li, H. Xie, S. Zhang, X. Wang: Facile transformation of hydrophilic cellulose into super hydrophobic cellulose. Chem. Commun. 4857 (2007)

    Google Scholar 

  32. B. Balu, V. Breedveld, W. Hess Dennis: Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir244785 (2008)

    Article  CAS  Google Scholar 

  33. J.D. Wright, N.A.J. Sommerdijk Sol-Gel Materials Chemistry and Applications (CRC Press, Boca Raton, FL 2001)

    Google Scholar 

  34. C. Sanchez, B. Julián, P. Belleville, M. Popall: Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem.153559 (2005)

    Article  CAS  Google Scholar 

  35. H. Wang, J. Fang, T. Cheng, J. Ding, L. Qu, L. Dai, X. Wang, T. Lin: One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity. Chem. Commun. 877 (2008)

    Google Scholar 

  36. L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu: Super-hydrophobic surfaces: From natural to artificial. Adv. Mater.141857 (2002)

    Article  CAS  Google Scholar 

  37. E.K. Kim, J. Won, J-y. Do, S.D. Kim, Y.S. Kang: Effects of silica nanoparticle and GPTMS addition on TEOS-based stone consolidants. J. Cult. Herit.10214 (2009)

    Article  Google Scholar 

  38. D. Briggs, M.P. Seah Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (John Wiley & Sons, New York 1983)533

    Google Scholar 

  39. J.B. McKelvey, B.G. Webre, E. Klein: Reaction of epoxides with cotton cellulose in the presence of sodium hydroxide. Text. Res. J.29918 (1959)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Ding, J., Xue, Y. et al. Superhydrophobic fabrics from hybrid silica sol-gel coatings: Structural effect of precursors on wettability and washing durability. Journal of Materials Research 25, 1336–1343 (2010). https://doi.org/10.1557/JMR.2010.0169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0169

Navigation