Skip to main content
Log in

Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Following earlier work of Huggins and Nix [Ionics6, 57 (2000)], several recent theoretical studies have used the shrinking core model to predict intraparticle Li concentration profiles and associated stress fields. A goal of such efforts is to understand and predict particle fracture, which is sometimes observed in degraded electrodes. In this paper we present experimental data on LiCoO2 and graphite active particles, consistent with previously published data, showing the presence of numerous internal pores or cracks in both positive and negative active electrode particles. New calculations presented here show that the presence of free surfaces, from even small internal cracks or pores, both quantitatively and qualitatively alters the internal stress distributions such that particles are prone to internal cracking rather than to the surface cracking that had been predicted previously. Thus, the fracture strength of particles depends largely on the internal microstructure of particles, about which little is known, rather than on the intrinsic mechanical properties of the particle materials. The validity of the shrinking core model for explaining either stress maps or transport is questioned for particles with internal structure, which includes most, if not all, secondary electrode particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Huggins, W. Nix: Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics657 (2000)

    Article  CAS  Google Scholar 

  2. Y. Cheng, M. Verbrugge: The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J. Appl. Phys.10483521 (2008)

    Article  Google Scholar 

  3. J. Christensen, J. Newman: A mathematical model of stress generation and fracture in lithium manganese oxide. J. Electrochem. Soc.153A1019 (2006)

    Article  CAS  Google Scholar 

  4. E. Garcia, Y. Chiang, W. Carter, P. Limthongkul, C. Bishop: Microstructural modeling and design of rechargeable lithium-ion batteries. J. Electrochem. Soc.152A255 (2005)

    Article  CAS  Google Scholar 

  5. X. Zhang, W. Shyy, A.M. Sastry: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc.154A910 (2007)

    Article  CAS  Google Scholar 

  6. H. Gabrisch, J. Wilcox, M. Doeff: TEM study of fracturing in spherical and plate-like LiFePO4 particles. Electrochem. Solid-State Lett.11A25 (2008)

    Article  CAS  Google Scholar 

  7. E. Markervich, G. Salitra, M. Levi, D. Aurbach: Capacity fading of lithiated graphite electrodes studied by a combination of electroanalytical methods, Raman spectroscopy and SEM. J. Power Sources146146 (2005)

    Article  CAS  Google Scholar 

  8. Y. Itou, Y. Ukyo: Performance of LiNiCoO2 materials for advanced lithium-ion batteries. J. Power Sources14639 (2005)

    Article  CAS  Google Scholar 

  9. T. Ohzuku, H. Tamura, K. Sawai: Monitoring of particle fracture by acoustic emission during charge and discharge of Li/MnO2 cells. J. Electrochem. Soc.1443496 (1997)

    Article  CAS  Google Scholar 

  10. V. Srinivasan, J. Newman: Discharge model for the lithium iron-phosphate electrode. J. Electrochem. Soc.151A1517 (2004)

    Article  CAS  Google Scholar 

  11. V. Srinivasan, J. Newman: Existence of path-dependence in the LiFePO4 electrode. Electrochem. Solid-State Lett.9A110 (2006)

    Article  CAS  Google Scholar 

  12. A. Andersson, J. Thomas: The source of first-cycle capacityloss in LiFePO4. J. Power Sources97498 (2001)

    Article  Google Scholar 

  13. C. Wang, A.M. Sastry: Mesoscale modeling of a Li-ion polymer cell. J. Electrochem. Soc.154A1035 (2007)

    Article  CAS  Google Scholar 

  14. G. Singh, G. Ceder, M. Bazant: Intercalation dynamics in rechargeable battery materials: General theory and phase-transformation waves in LiFePO4. Electrochim. Acta537599 (2008)

    Article  CAS  Google Scholar 

  15. C. Delmas, M. Maccario, L. Croguennec, F.L. Cras, F. Weill: Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater.7665 (2008)

    Article  CAS  Google Scholar 

  16. G. Chen, X. Song, T. Richardson: Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid-State Lett.9A295 (2006)

    Article  CAS  Google Scholar 

  17. L. Laffont, C. Delacourt, P. Gibot, M. Wu, P. Kooyman, C. Masquelier, J.M. Tarascon: Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem. Mater.185520 (2006)

    Article  CAS  Google Scholar 

  18. F. Joho, B. Rykarta, A. Blomea, P. Novák, H. Wilhelm, M.E. Spahr: Relation between surface properties, pore structure and first-cycle charge loss of graphite as negative electrode in lithium-ion batteries. J. Power Sources97-9878 (2001)

    Article  CAS  Google Scholar 

  19. H. Zhang, F. Li, C. Liu, J. Tan, H. Cheng: New insight into the solid electrolyte interphase with use of a focused ion beam. J. Phys. Chem. B10922205 (2005)

    Article  CAS  Google Scholar 

  20. D. Gostovic, J. Smith, D. Kundinger, K. Jones, E. Wachsman: Three-dimensional reconstruction of porous LSCF cathodes. Electrochem. Solid-State Lett.10B214 (2007)

    Article  CAS  Google Scholar 

  21. M. Uchic, L. Holzer, B. Inkson, E. Principe, P. Munroe: Three-dimensional microstructural characterization using focused ion beam tomography. MRS Bull.32, (5) 408 (2007)

    Article  CAS  Google Scholar 

  22. J.R. Wilson, W. Kobsiriphat, R. Mendoza, H-Y. Chen, J.M. Hiller, D.J. Miller, K. Thornton, P.W. Voorhees, S.B. Adler, S.A. Barnett: Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat. Mater.5541 (2006)

    Article  CAS  Google Scholar 

  23. Y-T. Cheng, M.W. Verbrugge: Evolution of stress within aspherical insertion electrode particle under potentiostatic andgalvanostatic operation. J. Power Sources190, (2) 453 (2009)

    Article  CAS  Google Scholar 

  24. R. Pollard, J. Newman: Mathematical modeling of the lithium-aluminum, iron sulfide battery. J. Electrochem. Soc.128491 (1981)

    Article  CAS  Google Scholar 

  25. R.C. Hibbeler Mechanics of Materials3rd ed (Prentice Hall, Upper Saddle River, NJ 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Harris.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, S.J., Deshpande, R.D., Qi, Y. et al. Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress. Journal of Materials Research 25, 1433–1440 (2010). https://doi.org/10.1557/JMR.2010.0183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0183

Navigation